Abstract
1. The effects of L-glutamate diethyl ester (GDEE) HCl, glutarate diethyl ester (GlrDEE) and glutarate dimethyl ester (GlrDME) on depolarizing responses to alpha-amino-3-hydroxy-5- methyl-4-isoxazolepropionate (AMPA), kainate (Kain), N-methyl-D-aspartate (NMDA) and quisqualate (Quis), and spontaneous paroxysmal discharges (SPDs) were examined. Experiments were performed on slices of rat cingulate cortex using the in vitro grease gap recording technique in nominally Mg(2+)-free Krebs medium. 2. GDEE HCl (3-14 mM) caused a concentration-dependent depolarization of the d.c. baseline potential. L-Glutamate (0.1-0.5 mM), HCl (15 mM) and sucrose (30 mM) also depolarized the baseline. GlrDEE (3-12 mM) and GlrDME (4-26 mM) had no consistent effect on baseline potential. 3. GDEE HCl (10 mM) had no effect on depolarizing responses to AMPA, Kain and NMDA, but caused potentiation of those to Quis with a dose-ratio of 0.53 (0.44-0.63) (n = 4). In two other experiments, where the depolarization of the baseline induced by GDEE HCl was large, a depression of Quis response amplitude was observed. 4. GlrDEE (10 mM) antagonized depolarizing responses to Kain, and to a lesser extent NMDA, with dose-ratios of 2.14 (1.92-2.38) and 1.61 (1.39-1.87), respectively. This concentration of GlrDEE had no effect on AMPA responses, but potentiated Quis responses, with a dose-ratio of 0.64 (0.58-0.71). 5. GlrDME (10 mM) antagonized depolarizing responses to Kain and to Quis, with dose-ratios of 1.66 (1.48-1.85) and 1.22 (1.15-1.29), respectively, and had no effect on responses to NMDA.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aram J. A., Lodge D. Epileptiform activity induced by alkalosis in rat neocortical slices: block by antagonists of N-methyl-D-aspartate. Neurosci Lett. 1987 Dec 29;83(3):345–350. doi: 10.1016/0304-3940(87)90112-1. [DOI] [PubMed] [Google Scholar]
- Bouchelouche P., Belhage B., Frandsen A., Drejer J., Schousboe A. Glutamate receptor activation in cultured cerebellar granule cells increases cytosolic free Ca2+ by mobilization of cellular Ca2+ and activation of Ca2+ influx. Exp Brain Res. 1989;76(2):281–291. doi: 10.1007/BF00247888. [DOI] [PubMed] [Google Scholar]
- Butcher S. P., Collins J. F., Roberts P. J. Characterization of the binding of DL-[3H]-2-amino-4-phosphonobutyrate to L-glutamate-sensitive sites on rat brain synaptic membranes. Br J Pharmacol. 1983 Oct;80(2):355–364. doi: 10.1111/j.1476-5381.1983.tb10041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies J., Watkins J. C. Depressant actions of gamma-D-glutamylaminomethyl sulfonate (GAMS) on amino acid-induced and synaptic excitation in the cat spinal cord. Brain Res. 1985 Feb 18;327(1-2):113–120. doi: 10.1016/0006-8993(85)91505-7. [DOI] [PubMed] [Google Scholar]
- Davies J., Watkins J. C. Differentiation of kainate and quisqualate receptors in the cat spinal cord by selective antagonism with gamma-D(and L)-glutamylglycine. Brain Res. 1981 Feb 9;206(1):172–177. doi: 10.1016/0006-8993(81)90111-6. [DOI] [PubMed] [Google Scholar]
- Drejer J., Honoré T., Meier E., Schousboe A. Pharmacologically distinct glutamate receptors on cerebellar granule cells. Life Sci. 1986 Jun 9;38(23):2077–2085. doi: 10.1016/0024-3205(86)90206-7. [DOI] [PubMed] [Google Scholar]
- Evans R. H., Francis A. A., Hunt K., Oakes D. J., Watkins J. C. Antagonism of excitatory amino acid-induced responses and of synaptic excitation in the isolated spinal cord of the frog. Br J Pharmacol. 1979 Dec;67(4):591–603. doi: 10.1111/j.1476-5381.1979.tb08706.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fletcher E. J., Martin D., Aram J. A., Lodge D., Honoré T. Quinoxalinediones selectively block quisqualate and kainate receptors and synaptic events in rat neocortex and hippocampus and frog spinal cord in vitro. Br J Pharmacol. 1988 Oct;95(2):585–597. doi: 10.1111/j.1476-5381.1988.tb11680.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freed W. J., Braun D. E. Anticonvulsant activity of deaminated analogues of glutamic acid diethyl ester (GDEE). Brain Res. 1988 Aug 30;459(1):157–162. doi: 10.1016/0006-8993(88)90297-1. [DOI] [PubMed] [Google Scholar]
- Freed W. J. Selective inhibition of homocysteine-induced seizures by glutamic acid diethyl ester and other glutamate esters. Epilepsia. 1985 Jan-Feb;26(1):30–36. doi: 10.1111/j.1528-1157.1985.tb05185.x. [DOI] [PubMed] [Google Scholar]
- Frenguelli B. G., Blake J. F., Brown M. W., Collingridge G. L. Electrogenic uptake contributes a major component of the depolarizing action of L-glutamate in rat hippocampal slices. Br J Pharmacol. 1991 Feb;102(2):355–362. doi: 10.1111/j.1476-5381.1991.tb12178.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison N. L., Simmonds M. A. Quantitative studies on some antagonists of N-methyl D-aspartate in slices of rat cerebral cortex. Br J Pharmacol. 1985 Feb;84(2):381–391. doi: 10.1111/j.1476-5381.1985.tb12922.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirono C., Ito I., Yamagishi S., Sugiyama H. Characterization of glutamate receptors induced in Xenopus oocytes after injection of rat brain mRNA. Neurosci Res. 1988 Dec;6(2):106–114. doi: 10.1016/0168-0102(88)90012-0. [DOI] [PubMed] [Google Scholar]
- Honoré T., Davies S. N., Drejer J., Fletcher E. J., Jacobsen P., Lodge D., Nielsen F. E. Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science. 1988 Aug 5;241(4866):701–703. doi: 10.1126/science.2899909. [DOI] [PubMed] [Google Scholar]
- Horne A. L., Harrison N. L., Turner J. P., Simmonds M. A. Spontaneous paroxysmal activity induced by zero magnesium and bicuculline: suppression by NMDA antagonists and GABA mimetics. Eur J Pharmacol. 1986 Mar 18;122(2):231–238. doi: 10.1016/0014-2999(86)90107-x. [DOI] [PubMed] [Google Scholar]
- Kiskin N. I., Krishtal O. A., Tsyndrenko AYa Excitatory amino acid receptors in hippocampal neurons: kainate fails to desensitize them. Neurosci Lett. 1986 Jan 30;63(3):225–230. doi: 10.1016/0304-3940(86)90360-5. [DOI] [PubMed] [Google Scholar]
- Krogsgaard-Larsen P., Honoré T., Hansen J. J., Curtis D. R., Lodge D. New class of glutamate agonist structurally related to ibotenic acid. Nature. 1980 Mar 6;284(5751):64–66. doi: 10.1038/284064a0. [DOI] [PubMed] [Google Scholar]
- MacDonald J. F., Nistri A., Padjen A. L. Neuronal depressant effects of diethylester derivatives of excitatory amino acids. Can J Physiol Pharmacol. 1977 Dec;55(6):1387–1390. doi: 10.1139/y77-185. [DOI] [PubMed] [Google Scholar]
- McLennan H., Lodge D. The antagonism of amino acid-induced excitation of spinal neurones in the cat. Brain Res. 1979 Jun 15;169(1):83–90. doi: 10.1016/0006-8993(79)90375-5. [DOI] [PubMed] [Google Scholar]
- McLennan H. Receptors for the excitatory amino acids in the mammalian central nervous system. Prog Neurobiol. 1983;20(3-4):251–271. doi: 10.1016/0301-0082(83)90004-7. [DOI] [PubMed] [Google Scholar]
- Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2;307(5950):462–465. doi: 10.1038/307462a0. [DOI] [PubMed] [Google Scholar]
- Rosen A. S., Andrew R. D. Osmotic effects upon excitability in rat neocortical slices. Neuroscience. 1990;38(3):579–590. doi: 10.1016/0306-4522(90)90052-6. [DOI] [PubMed] [Google Scholar]
- Segal M. Glutamate antagonists in rat hippocampus. Br J Pharmacol. 1976 Nov;58(3):341–345. doi: 10.1111/j.1476-5381.1976.tb07710.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith D. A., Connick J. H., Stone T. W. Effect of changing extracellular levels of magnesium on spontaneous activity and glutamate release in the mouse neocortical slice. Br J Pharmacol. 1989 Jun;97(2):475–482. doi: 10.1111/j.1476-5381.1989.tb11975.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spencer H. J., Gribkoff V. K., Cotman C. W., Lynch G. S. GDEE antagonism of iontophoretic amino acid excitations in the intact hippocampus and in the hippocampal slice preparation. Brain Res. 1976 Apr 9;105(3):471–481. doi: 10.1016/0006-8993(76)90594-1. [DOI] [PubMed] [Google Scholar]
- Traynelis S. F., Cull-Candy S. G. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature. 1990 May 24;345(6273):347–350. doi: 10.1038/345347a0. [DOI] [PubMed] [Google Scholar]
- Umbach J. A., Gundersen C. B. Mercuric ions are potent noncompetitive antagonists of human brain kainate receptors expressed in Xenopus oocytes. Mol Pharmacol. 1989 Oct;36(4):582–588. [PubMed] [Google Scholar]
- Verdoorn T. A., Kleckner N. W., Dingledine R. N-methyl-D-aspartate/glycine and quisqualate/kainate receptors expressed in Xenopus oocytes: antagonist pharmacology. Mol Pharmacol. 1989 Mar;35(3):360–368. [PubMed] [Google Scholar]
- Watkins J. C., Evans R. H. Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol. 1981;21:165–204. doi: 10.1146/annurev.pa.21.040181.001121. [DOI] [PubMed] [Google Scholar]
- Werling L. L., Doman K. A., Nadler J. V. L-[3H]Glutamate binding to hippocampal synaptic membranes: two binding sites discriminated by their differing affinities for quisqualate. J Neurochem. 1983 Aug;41(2):586–593. doi: 10.1111/j.1471-4159.1983.tb04779.x. [DOI] [PubMed] [Google Scholar]
- Zaczek R., Balm M., Arlis S., Drucker H., Coyle J. T. Quisqualate-sensitive, chloride-dependent transport of glutamate into rat brain synaptosomes. J Neurosci Res. 1987;18(3):425–431. doi: 10.1002/jnr.490180307. [DOI] [PubMed] [Google Scholar]
