Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Oct;104(2):305–310. doi: 10.1111/j.1476-5381.1991.tb12427.x

Ruthenium-red inhibits CGRP release by capsaicin and resiniferatoxin but not by ouabain, bradykinin or nicotine in guinea-pig heart: correlation with effects on cardiac contractility.

A Franco-Cereceda 1, Y P Lou 1, J M Lundberg 1
PMCID: PMC1908571  PMID: 1724624

Abstract

1. The possible influence of ruthenium-red (RR) on contractility and outflow of calcitonin gene-related peptide (CGRP)-like and neuropeptide Y (NPY)-like immunoreactivity (LI) from the heart of the guinea-pig induced by capsaicin, resiniferatoxin, nicotine, ouabain or bradykinin was studied in vitro. 2. In the isolated right atrium, exposure to capsaicin evoked an increase in contractile rate and tension simultaneously with an enhanced outflow of CGRP-LI, indicating release from the atria. Repeated administration of capsaicin induced tachyphylaxis. Incubation with RR markedly attenuated the capsaicin-evoked release of CGRP-LI while no clear-cut effects were seen on contractile tension or rate. 3. In the isolated whole heart, perfusion with capsaicin induced an increased outflow of CGRP-LI and stimulated heart rate, while a negative inotropic effect was observed. A second administration of capsaicin to the same preparations failed to influence the CGRP-LI outflow and in these experiments the positive chronotropic effect was absent while the negative inotropic action remained unchanged. Capsaicin-perfusion in the presence of RR failed to induce any increased outflow of CGRP-LI from the hearts or changes in contractile activity. However, after 1 h of rinsing with Tyrode solution repeated capsaicin perfusion in the absence of RR caused a clear-cut (60% of control) release of CGRP-LI and contractile responses were restored. 4. Perfusion with resiniferatoxin evoked a RR-sensitive, clear-cut increased CGRP-LI output without any effects on contractile force or heart rate. Repeated administration of resiniferatoxin induced tachyphylaxis with respect to outflow.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
305

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amara S. G., Jonas V., Rosenfeld M. G., Ong E. S., Evans R. M. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature. 1982 Jul 15;298(5871):240–244. doi: 10.1038/298240a0. [DOI] [PubMed] [Google Scholar]
  2. Dray A., Bettaney J., Forster P. Resiniferatoxin, a potent capsaicin-like stimulator of peripheral nociceptors in the neonatal rat tail in vitro. Br J Pharmacol. 1990 Feb;99(2):323–326. doi: 10.1111/j.1476-5381.1990.tb14702.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Franco-Cereceda A. Calcitonin gene-related peptide and tachykinins in relation to local sensory control of cardiac contractility and coronary vascular tone. Acta Physiol Scand Suppl. 1988;569:1–63. [PubMed] [Google Scholar]
  4. Franco-Cereceda A., Henke H., Lundberg J. M., Petermann J. B., Hökfelt T., Fischer J. A. Calcitonin gene-related peptide (CGRP) in capsaicin-sensitive substance P-immunoreactive sensory neurons in animals and man: distribution and release by capsaicin. Peptides. 1987 Mar-Apr;8(2):399–410. doi: 10.1016/0196-9781(87)90117-3. [DOI] [PubMed] [Google Scholar]
  5. Franco-Cereceda A., Lou Y. P., Lundberg J. M. Ruthenium red differentiates between capsaicin and nicotine effects on cardiac sensory nerves. Acta Physiol Scand. 1989 Nov;137(3):457–458. doi: 10.1111/j.1748-1716.1989.tb08748.x. [DOI] [PubMed] [Google Scholar]
  6. Franco-Cereceda A., Lundberg J. M. Calcitonin gene-related peptide (CGRP) and capsaicin-induced stimulation of heart contractile rate and force. Naunyn Schmiedebergs Arch Pharmacol. 1985 Nov;331(2-3):146–151. doi: 10.1007/BF00634231. [DOI] [PubMed] [Google Scholar]
  7. Franco-Cereceda A., Lundberg J. M., Saria A., Schreibmayer W., Tritthart H. A. Calcitonin gene-related peptide: release by capsaicin and prolongation of the action potential in the guinea-pig heart. Acta Physiol Scand. 1988 Feb;132(2):181–190. doi: 10.1111/j.1748-1716.1988.tb08316.x. [DOI] [PubMed] [Google Scholar]
  8. Franco-Cereceda A., Saria A., Lundberg J. M. Differential release of calcitonin gene-related peptide and neuropeptide Y from the isolated heart by capsaicin, ischaemia, nicotine, bradykinin and ouabain. Acta Physiol Scand. 1989 Feb;135(2):173–187. doi: 10.1111/j.1748-1716.1989.tb08565.x. [DOI] [PubMed] [Google Scholar]
  9. Franco-Cereceda A., Saria A., Lundberg J. M. Ischaemia and changes in contractility induce release of calcitonin gene-related peptide but not neuropeptide Y from the isolated perfused guinea-pig heart. Acta Physiol Scand. 1987 Oct;131(2):319–320. doi: 10.1111/j.1748-1716.1987.tb08244.x. [DOI] [PubMed] [Google Scholar]
  10. Gamse R., Molnar A., Lembeck F. Substance P release from spinal cord slices by capsaicin. Life Sci. 1979 Aug 13;25(7):629–636. doi: 10.1016/0024-3205(79)90558-7. [DOI] [PubMed] [Google Scholar]
  11. Hoover D. B. Effects of capsaicin on release of substance P-like immunoreactivity and physiological parameters in isolated perfused guinea-pig heart. Eur J Pharmacol. 1987 Sep 23;141(3):489–492. doi: 10.1016/0014-2999(87)90571-1. [DOI] [PubMed] [Google Scholar]
  12. Jancsó G., Karcsú S., Király E., Szebeni A., Tóth L., Bácsy E., Joó F., Párducz A. Neurotoxin induced nerve cell degeneration: possible involvement of calcium. Brain Res. 1984 Mar 19;295(2):211–216. doi: 10.1016/0006-8993(84)90969-7. [DOI] [PubMed] [Google Scholar]
  13. Langer G. A. Heart: excitation-contraction coupling. Annu Rev Physiol. 1973;35:55–86. doi: 10.1146/annurev.ph.35.030173.000415. [DOI] [PubMed] [Google Scholar]
  14. Lundberg J. M., Franco-Cereceda A., Hua X., Hökfelt T., Fischer J. A. Co-existence of substance P and calcitonin gene-related peptide-like immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin. Eur J Pharmacol. 1985 Feb 5;108(3):315–319. doi: 10.1016/0014-2999(85)90456-x. [DOI] [PubMed] [Google Scholar]
  15. Lundberg J. M., Terenius L., Hökfelt T., Martling C. R., Tatemoto K., Mutt V., Polak J., Bloom S., Goldstein M. Neuropeptide Y (NPY)-like immunoreactivity in peripheral noradrenergic neurons and effects of NPY on sympathetic function. Acta Physiol Scand. 1982 Dec;116(4):477–480. doi: 10.1111/j.1748-1716.1982.tb07171.x. [DOI] [PubMed] [Google Scholar]
  16. Maggi C. A., Patacchini R., Santicioli P., Giuliani S., Geppetti P., Meli A. Protective action of ruthenium red toward capsaicin desensitization of sensory fibers. Neurosci Lett. 1988 May 26;88(2):201–205. doi: 10.1016/0304-3940(88)90126-7. [DOI] [PubMed] [Google Scholar]
  17. Marsh S. J., Stansfeld C. E., Brown D. A., Davey R., McCarthy D. The mechanism of action of capsaicin on sensory C-type neurons and their axons in vitro. Neuroscience. 1987 Oct;23(1):275–289. doi: 10.1016/0306-4522(87)90289-2. [DOI] [PubMed] [Google Scholar]
  18. Miller R. J. Multiple calcium channels and neuronal function. Science. 1987 Jan 2;235(4784):46–52. doi: 10.1126/science.2432656. [DOI] [PubMed] [Google Scholar]
  19. Moore C. L. Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun. 1971 Jan 22;42(2):298–305. doi: 10.1016/0006-291x(71)90102-1. [DOI] [PubMed] [Google Scholar]
  20. Rahamimoff R., Alnaes E. Inhibitory action of Ruthenium red on neuromuscular transmission. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3613–3616. doi: 10.1073/pnas.70.12.3613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rosenfeld M. G., Mermod J. J., Amara S. G., Swanson L. W., Sawchenko P. E., Rivier J., Vale W. W., Evans R. M. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature. 1983 Jul 14;304(5922):129–135. doi: 10.1038/304129a0. [DOI] [PubMed] [Google Scholar]
  22. Swanson P. D., Anderson L., Stahl W. L. Uptake of calcium ions by synaptosomes from rat brain. Biochim Biophys Acta. 1974 Jul 31;356(2):174–183. doi: 10.1016/0005-2736(74)90281-8. [DOI] [PubMed] [Google Scholar]
  23. Szallasi A., Blumberg P. M. Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper. Neuroscience. 1989;30(2):515–520. doi: 10.1016/0306-4522(89)90269-8. [DOI] [PubMed] [Google Scholar]
  24. Tapia R., Meza-Ruíz G. Inhibition by ruthenium red of the calcium-dependent release of [3H]GABA in synaptosomal fractions. Brain Res. 1977 Apr 22;126(1):160–166. doi: 10.1016/0006-8993(77)90223-2. [DOI] [PubMed] [Google Scholar]
  25. Theodorsson-Norheim E., Hemsén A., Lundberg J. M. Radioimmunoassay for neuropeptide Y (NPY): chromatographic characterization of immunoreactivity in plasma and tissue extracts. Scand J Clin Lab Invest. 1985 Jun;45(4):355–365. doi: 10.3109/00365518509161019. [DOI] [PubMed] [Google Scholar]
  26. Wood J. N., Winter J., James I. F., Rang H. P., Yeats J., Bevan S. Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. J Neurosci. 1988 Sep;8(9):3208–3220. doi: 10.1523/JNEUROSCI.08-09-03208.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zernig G., Holzer P., Lembeck F. A study of the mode and site of action of capsaicin in guinea-pig heart and rat uterus. Naunyn Schmiedebergs Arch Pharmacol. 1984 May;326(1):58–63. doi: 10.1007/BF00518779. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES