Abstract
1. The effects of 5-HT3 selective agonists have been studied in whole-cell voltage-clamped N1E-115 neuroblastoma cells. 2. Application of 5-hydroxytryptamine (5-HT) results in the rapid development of a transient inward current at quasiphysiological membrane potentials. This current can be blocked by the 5-HT3 specific antagonists BRL 43694 and GR67330. 3. Application of 2-methyl-5-HT (2-Me5-HT), a 5-HT3 selective agonist, produced a qualitatively similar inward current, but with a maximum response only 20% of that produced by 5-HT. 4. In the presence of 100 microM 2-Me5-HT, the upper part of the 5-HT dose-response curve was shifted to the right but reached the same maximum value as in the absence of 2-Me5-HT. 2-Me5-HT appears therefore to be a partial agonist under these conditions. 5. The novel 5-HT3 agonist, meta-chlorophenylbiguanide (mCPBG) is a full agonist, but has a Hill coefficient (1.5) significantly less than that of 5-HT (2.3). 6. Comparison with radioligand binding data show that mCBPG is 100 times less potent than expected; it may therefore exhibit a high affinity for a desensitized state.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradley P. B., Engel G., Feniuk W., Fozard J. R., Humphrey P. P., Middlemiss D. N., Mylecharane E. J., Richardson B. P., Saxena P. R. Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology. 1986 Jun;25(6):563–576. doi: 10.1016/0028-3908(86)90207-8. [DOI] [PubMed] [Google Scholar]
- Bristow D. R., Martin I. L. GABA preincubation of rat brain sections increases [3H]GABA binding to the GABAA receptor and compromises the modulatory interactions. Eur J Pharmacol. 1989 Nov 28;173(1):65–73. doi: 10.1016/0014-2999(89)90009-5. [DOI] [PubMed] [Google Scholar]
- Derkach V., Surprenant A., North R. A. 5-HT3 receptors are membrane ion channels. Nature. 1989 Jun 29;339(6227):706–709. doi: 10.1038/339706a0. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Ireland S. J., Tyers M. B. Pharmacological characterization of 5-hydroxytryptamine-induced depolarization of the rat isolated vagus nerve. Br J Pharmacol. 1987 Jan;90(1):229–238. doi: 10.1111/j.1476-5381.1987.tb16844.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones B. J., Costall B., Domeney A. M., Kelly M. E., Naylor R. J., Oakley N. R., Tyers M. B. The potential anxiolytic activity of GR38032F, a 5-HT3-receptor antagonist. Br J Pharmacol. 1988 Apr;93(4):985–993. doi: 10.1111/j.1476-5381.1988.tb11489.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilpatrick G. J., Butler A., Burridge J., Oxford A. W. 1-(m-chlorophenyl)-biguanide, a potent high affinity 5-HT3 receptor agonist. Eur J Pharmacol. 1990 Jun 21;182(1):193–197. doi: 10.1016/0014-2999(90)90513-6. [DOI] [PubMed] [Google Scholar]
- Kilpatrick G. J., Jones B. J., Tyers M. B. Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature. 1987 Dec 24;330(6150):746–748. doi: 10.1038/330746a0. [DOI] [PubMed] [Google Scholar]
- Lambert J. J., Peters J. A., Hales T. G., Dempster J. The properties of 5-HT3 receptors in clonal cell lines studied by patch-clamp techniques. Br J Pharmacol. 1989 May;97(1):27–40. doi: 10.1111/j.1476-5381.1989.tb11920.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lummis S. C., Kilpatrick G. J., Martin I. L. Characterization of 5-HT3 receptors in intact N1E-115 neuroblastoma cells. Eur J Pharmacol. 1990 Sep 18;189(2-3):223–227. doi: 10.1016/0922-4106(90)90026-t. [DOI] [PubMed] [Google Scholar]
- Miner W. D., Sanger G. J., Turner D. H. Evidence that 5-hydroxytryptamine3 receptors mediate cytotoxic drug and radiation-evoked emesis. Br J Cancer. 1987 Aug;56(2):159–162. doi: 10.1038/bjc.1987.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Neijt H. C., Plomp J. J., Vijverberg H. P. Kinetics of the membrane current mediated by serotonin 5-HT3 receptors in cultured mouse neuroblastoma cells. J Physiol. 1989 Apr;411:257–269. doi: 10.1113/jphysiol.1989.sp017572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neijt H. C., te Duits I. J., Vijverberg H. P. Pharmacological characterization of serotonin 5-HT3 receptor-mediated electrical response in cultured mouse neuroblastoma cells. Neuropharmacology. 1988 Mar;27(3):301–307. doi: 10.1016/0028-3908(88)90048-2. [DOI] [PubMed] [Google Scholar]
- Peters J. A., Lambert J. J. Electrophysiology of 5-HT3 receptors in neuronal cell lines. Trends Pharmacol Sci. 1989 May;10(5):172–175. doi: 10.1016/0165-6147(89)90230-7. [DOI] [PubMed] [Google Scholar]
- Richardson B. P., Engel G., Donatsch P., Stadler P. A. Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature. 1985 Jul 11;316(6024):126–131. doi: 10.1038/316126a0. [DOI] [PubMed] [Google Scholar]
- Suzuki S., Tachibana M., Kaneko A. Effects of glycine and GABA on isolated bipolar cells of the mouse retina. J Physiol. 1990 Feb;421:645–662. doi: 10.1113/jphysiol.1990.sp017967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallis D., Nash H. Relative activities of substances related to 5-hydroxytryptamine as depolarizing agents of superior cervical ganglion cells. Eur J Pharmacol. 1981 Mar 26;70(3):381–392. doi: 10.1016/0014-2999(81)90171-0. [DOI] [PubMed] [Google Scholar]
- Yakel J. L., Jackson M. B. 5-HT3 receptors mediate rapid responses in cultured hippocampus and a clonal cell line. Neuron. 1988 Sep;1(7):615–621. doi: 10.1016/0896-6273(88)90111-0. [DOI] [PubMed] [Google Scholar]
