Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Nov;70(11):7878–7884. doi: 10.1128/jvi.70.11.7878-7884.1996

Synthesis, processing, and oligomerization of bovine herpesvirus 1 gE and gI membrane proteins.

J C Whitbeck 1, A C Knapp 1, L W Enquist 1, W C Lawrence 1, L J Bello 1
PMCID: PMC190859  PMID: 8892910

Abstract

This study reports the identification and initial characterization of the precursors, modified forms, and oligomers of bovine herpesvirus 1 (BHV-1) gI and gE proteins with polyvalent rabbit serum specific for gI or gE. Our experiments used the Colorado strain of BHV-1 and mutant viruses with insertions of the Escherichia coli lacZ gene into the predicted gE and gI reading frames. We also translated the gE and gI open reading frames in vitro and expressed them in uninfected cells using eukaryotic expression vectors. Precursor-product relationships were established by pulse-chase analysis and endoglycosidase H and glycopeptidase F digestions. Like the homologous glycoproteins of herpes simplex virus type 1, pseudorabies virus, and varicella-zoster virus, BHV-1 gI and gE are modified by N-linked glycosylation and associate with each other soon after synthesis, forming a noncovalent complex in infected and transfected cells. An analysis of mutant and wild-type-virus-infected cells and transfected COS cells expressing gE or gI alone suggested that gE-gI complex formation is necessary for efficient processing of the gE precursor to its mature form. One new finding was that unlike the other alphaherpesvirus gI homologs, a fraction of pulse-labeled gI synthesized in BHV-1-infected cells apparently is cleaved into two relatively stable fragments 2 to 4 h after the pulse. Finally, we incubated BHV-1-infected cell extracts with nonimmune mouse, rabbit, horse, pig, and calf sera and found no evidence that gE or gI functioned as Fc receptors as reported for the herpes simplex virus type 1 and varicella-zoster virus homologs.

Full Text

The Full Text of this article is available as a PDF (350.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basu S., Dubin G., Basu M., Nguyen V., Friedman H. M. Characterization of regions of herpes simplex virus type 1 glycoprotein E involved in binding the Fc domain of monomeric IgG and in forming a complex with glycoprotein I. J Immunol. 1995 Jan 1;154(1):260–267. [PubMed] [Google Scholar]
  2. Bell S., Cranage M., Borysiewicz L., Minson T. Induction of immunoglobulin G Fc receptors by recombinant vaccinia viruses expressing glycoproteins E and I of herpes simplex virus type 1. J Virol. 1990 May;64(5):2181–2186. doi: 10.1128/jvi.64.5.2181-2186.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bello L. J., Whitbeck J. C., Lawrence W. C. Sequence and transcript analysis of the bovine herpesvirus 1 thymidine kinase locus. Virology. 1992 Aug;189(2):407–414. doi: 10.1016/0042-6822(92)90564-6. [DOI] [PubMed] [Google Scholar]
  4. Card J. P., Enquist L. W. Neurovirulence of pseudorabies virus. Crit Rev Neurobiol. 1995;9(2-3):137–162. [PubMed] [Google Scholar]
  5. Chase C. C., Carter-Allen K., Lohff C., Letchworth G. J., 3rd Bovine cells expressing bovine herpesvirus 1 (BHV-1) glycoprotein IV resist infection by BHV-1, herpes simplex virus, and pseudorabies virus. J Virol. 1990 Oct;64(10):4866–4872. doi: 10.1128/jvi.64.10.4866-4872.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dingwell K. S., Brunetti C. R., Hendricks R. L., Tang Q., Tang M., Rainbow A. J., Johnson D. C. Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J Virol. 1994 Feb;68(2):834–845. doi: 10.1128/jvi.68.2.834-845.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edson C. M. Tyrosine sulfation of varicella-zoster virus envelope glycoprotein gpl. Virology. 1993 Nov;197(1):159–165. doi: 10.1006/viro.1993.1576. [DOI] [PubMed] [Google Scholar]
  8. Fehler F., Herrmann J. M., Saalmüller A., Mettenleiter T. C., Keil G. M. Glycoprotein IV of bovine herpesvirus 1-expressing cell line complements and rescues a conditionally lethal viral mutant. J Virol. 1992 Feb;66(2):831–839. doi: 10.1128/jvi.66.2.831-839.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hansen J. E., Lund O., Engelbrecht J., Bohr H., Nielsen J. O., Hansen J. E. Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Biochem J. 1995 Jun 15;308(Pt 3):801–813. doi: 10.1042/bj3080801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huemer H. P., Larcher C., van Drunen Littel-van den Hurk S., Babiuk L. A. Species selective interaction of Alphaherpesvirinae with the "unspecific" immune system of the host. Arch Virol. 1993;130(3-4):353–364. doi: 10.1007/BF01309666. [DOI] [PubMed] [Google Scholar]
  11. Jacobs L. Glycoprotein E of pseudorabies virus and homologous proteins in other alphaherpesvirinae. Arch Virol. 1994;137(3-4):209–228. doi: 10.1007/BF01309470. [DOI] [PubMed] [Google Scholar]
  12. Jacobs L., Mulder W. A., Priem J., Pol J. M., Kimman T. G. Glycoprotein I of pseudorabies virus (Aujeszky's disease virus) determines virulence and facilitates penetration of the virus into the central nervous system of pigs. Acta Vet Hung. 1994;42(2-3):289–300. [PubMed] [Google Scholar]
  13. Jacobs L., Mulder W. A., Van Oirschot J. T., Gielkens A. L., Kimman T. G. Deleting two amino acids in glycoprotein gI of pseudorabies virus decreases virulence and neurotropism for pigs, but does not affect immunogenicity. J Gen Virol. 1993 Oct;74(Pt 10):2201–2206. doi: 10.1099/0022-1317-74-10-2201. [DOI] [PubMed] [Google Scholar]
  14. Jacobs L., Rziha H. J., Kimman T. G., Gielkens A. L., Van Oirschot J. T. Deleting valine-125 and cysteine-126 in glycoprotein gI of pseudorabies virus strain NIA-3 decreases plaque size and reduces virulence in mice. Arch Virol. 1993;131(3-4):251–264. doi: 10.1007/BF01378630. [DOI] [PubMed] [Google Scholar]
  15. Johnson D. C., Feenstra V. Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. J Virol. 1987 Jul;61(7):2208–2216. doi: 10.1128/jvi.61.7.2208-2216.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnson D. C., Frame M. C., Ligas M. W., Cross A. M., Stow N. D. Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. J Virol. 1988 Apr;62(4):1347–1354. doi: 10.1128/jvi.62.4.1347-1354.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaashoek M. J., Moerman A., Madić J., Rijsewijk F. A., Quak J., Gielkens A. L., van Oirschot J. T. A conventionally attenuated glycoprotein E-negative strain of bovine herpesvirus type 1 is an efficacious and safe vaccine. Vaccine. 1994 Apr;12(5):439–444. doi: 10.1016/0264-410x(94)90122-8. [DOI] [PubMed] [Google Scholar]
  18. Lawrence W. C., D'urso R. C., Kundel C. A., Whitbeck J. C., Bello L. J. Map location of the gene for a 130,000-dalton glycoprotein of bovine herpesvirus 1. J Virol. 1986 Nov;60(2):405–414. doi: 10.1128/jvi.60.2.405-414.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leung-Tack P., Audonnet J. C., Riviere M. The complete DNA sequence and the genetic organization of the short unique region (US) of the bovine herpesvirus type 1 (ST strain). Virology. 1994 Mar;199(2):409–421. doi: 10.1006/viro.1994.1139. [DOI] [PubMed] [Google Scholar]
  20. Li Y., Liang X., van Drunen Littel-van den Hurk S., Attah-Poku S., Babiuk L. A. Glycoprotein Bb, the N-terminal subunit of bovine herpesvirus 1 gB, can bind to heparan sulfate on the surfaces of Madin-Darby bovine kidney cells. J Virol. 1996 Mar;70(3):2032–2037. doi: 10.1128/jvi.70.3.2032-2037.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li Y., van Drunen Littel-van den Hurk S., Babiuk L. A., Liang X. Characterization of cell-binding properties of bovine herpesvirus 1 glycoproteins B, C, and D: identification of a dual cell-binding function of gB. J Virol. 1995 Aug;69(8):4758–4768. doi: 10.1128/jvi.69.8.4758-4768.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liang X. P., Babiuk L. A., van Drunen Littel-van den Hurk S., Fitzpatrick D. R., Zamb T. J. Bovine herpesvirus 1 attachment to permissive cells is mediated by its major glycoproteins gI, gIII, and gIV. J Virol. 1991 Mar;65(3):1124–1132. doi: 10.1128/jvi.65.3.1124-1132.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liang X., Babiuk L. A., Zamb T. J. An in vivo study of a glycoprotein gIII-negative bovine herpesvirus 1 (BHV-1) mutant expressing beta-galactosidase: evaluation of the role of gIII in virus infectivity and its use as a vector for mucosal immunization. Virology. 1992 Aug;189(2):629–639. doi: 10.1016/0042-6822(92)90586-e. [DOI] [PubMed] [Google Scholar]
  24. Litwin V., Jackson W., Grose C. Receptor properties of two varicella-zoster virus glycoproteins, gpI and gpIV, homologous to herpes simplex virus gE and gI. J Virol. 1992 Jun;66(6):3643–3651. doi: 10.1128/jvi.66.6.3643-3651.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Montalvo E. A., Parmley R. T., Grose C. Structural analysis of the varicella-zoster virus gp98-gp62 complex: posttranslational addition of N-linked and O-linked oligosaccharide moieties. J Virol. 1985 Mar;53(3):761–770. doi: 10.1128/jvi.53.3.761-770.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mulder W. A., Jacobs L., Priem J., Kok G. L., Wagenaar F., Kimman T. G., Pol J. M. Glycoprotein gE-negative pseudorabies virus has a reduced capability to infect second- and third-order neurons of the olfactory and trigeminal routes in the porcine central nervous system. J Gen Virol. 1994 Nov;75(Pt 11):3095–3106. doi: 10.1099/0022-1317-75-11-3095. [DOI] [PubMed] [Google Scholar]
  27. Okazaki K., Matsuzaki T., Sugahara Y., Okada J., Hasebe M., Iwamura Y., Ohnishi M., Kanno T., Shimizu M., Honda E. BHV-1 adsorption is mediated by the interaction of glycoprotein gIII with heparinlike moiety on the cell surface. Virology. 1991 Apr;181(2):666–670. doi: 10.1016/0042-6822(91)90900-v. [DOI] [PubMed] [Google Scholar]
  28. Rebordosa X., Piñol J., Pérez-Pons J. A., Lloberas J., Naval J., Querol E. Mapping, cloning and sequencing of a glycoprotein-encoding gene from bovine herpesvirus type 1 homologous to the gE gene from HSV-1. Gene. 1994 Nov 18;149(2):203–209. doi: 10.1016/0378-1119(94)90151-1. [DOI] [PubMed] [Google Scholar]
  29. Seed B., Aruffo A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc Natl Acad Sci U S A. 1987 May;84(10):3365–3369. doi: 10.1073/pnas.84.10.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Strebel K., Beck E., Strohmaier K., Schaller H. Characterization of foot-and-mouth disease virus gene products with antisera against bacterially synthesized fusion proteins. J Virol. 1986 Mar;57(3):983–991. doi: 10.1128/jvi.57.3.983-991.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tikoo S. K., Fitzpatrick D. R., Babiuk L. A., Zamb T. J. Molecular cloning, sequencing, and expression of functional bovine herpesvirus 1 glycoprotein gIV in transfected bovine cells. J Virol. 1990 Oct;64(10):5132–5142. doi: 10.1128/jvi.64.10.5132-5142.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Whealy M. E., Card J. P., Robbins A. K., Dubin J. R., Rziha H. J., Enquist L. W. Specific pseudorabies virus infection of the rat visual system requires both gI and gp63 glycoproteins. J Virol. 1993 Jul;67(7):3786–3797. doi: 10.1128/jvi.67.7.3786-3797.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yao Z., Grose C. Unusual phosphorylation sequence in the gpIV (gI) component of the varicella-zoster virus gpI-gpIV glycoprotein complex (VZV gE-gI complex). J Virol. 1994 Jul;68(7):4204–4211. doi: 10.1128/jvi.68.7.4204-4211.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yao Z., Jackson W., Forghani B., Grose C. Varicella-zoster virus glycoprotein gpI/gpIV receptor: expression, complex formation, and antigenicity within the vaccinia virus-T7 RNA polymerase transfection system. J Virol. 1993 Jan;67(1):305–314. doi: 10.1128/jvi.67.1.305-314.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yao Z., Jackson W., Grose C. Identification of the phosphorylation sequence in the cytoplasmic tail of the varicella-zoster virus Fc receptor glycoprotein gpI. J Virol. 1993 Aug;67(8):4464–4473. doi: 10.1128/jvi.67.8.4464-4473.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zsak L., Zuckermann F., Sugg N., Ben-Porat T. Glycoprotein gI of pseudorabies virus promotes cell fusion and virus spread via direct cell-to-cell transmission. J Virol. 1992 Apr;66(4):2316–2325. doi: 10.1128/jvi.66.4.2316-2325.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zuckermann F. A., Mettenleiter T. C., Schreurs C., Sugg N., Ben-Porat T. Complex between glycoproteins gI and gp63 of pseudorabies virus: its effect on virus replication. J Virol. 1988 Dec;62(12):4622–4626. doi: 10.1128/jvi.62.12.4622-4626.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES