Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Jan;105(1):184–190. doi: 10.1111/j.1476-5381.1992.tb14233.x

Effects of inhibiting nitric oxide biosynthesis on the systemic and splanchnic circulation of rats with portal hypertension.

M P Pizcueta 1, J M Piqué 1, J Bosch 1, B J Whittle 1, S Moncada 1
PMCID: PMC1908593  PMID: 1596680

Abstract

1. The effects of inhibiting endogenous nitric oxide (NO) synthesis with NG-monomethyl-L-arginine (L-NMMA) on the systemic and splanchnic circulation have been investigated in rats with experimental chronic portal hypertension, anaesthetized with ketamine. 2. Portal hypertension was induced by partial portal vein ligation, 2 weeks prior to study. This procedure induced a reduction in systemic arterial blood pressure (MAP), an increase in cardiac output as measured by radiolabelled microspheres, a reduction in peripheral and splanchnic vascular resistance and an increased portal venous inflow (PVI) and portal pressure, as compared to control non-ligated rats. 3. L-NMAA (6.25 and 50 mg kg-1, i.v.) dose-dependently increased MAP, reduced cardiac output and PVI, and increased peripheral and splanchnic vascular resistance. With L-NMMA (50 mg kg-1), PVI and the vascular resistances returned to values comparable to those determined in control non-ligated anaesthetized rats under resting conditions. 4. Porto-collateral resistance was also increased by these doses of L-NMMA, whereas portal pressure was unchanged. The increase in renal blood flow and decrease in renal vascular resistance also seen in portal-hypertensive rats was reversed by L-NMMA (50 mg kg-1). 5. These effects of L-NMMA (50 mg kg-1) were inhibited by prior administration of L-arginine (300 mg kg-1, i.v.). 6. These findings indicate that the chronic hyperdynamic circulatory characteristics following portal vein stenosis can be attenuated by L-NMMA. Thus, the excessive formation of endogenous NO may be implicated in the pathogenesis of the haemodynamic disturbances and splanchnic vasodilatation associated with chronic portal hypertension.

Full text

PDF
184

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisaka K., Gross S. S., Griffith O. W., Levi R. NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? Biochem Biophys Res Commun. 1989 Apr 28;160(2):881–886. doi: 10.1016/0006-291x(89)92517-5. [DOI] [PubMed] [Google Scholar]
  2. Benoit J. N., Barrowman J. A., Harper S. L., Kvietys P. R., Granger D. N. Role of humoral factors in the intestinal hyperemia associated with chronic portal hypertension. Am J Physiol. 1984 Nov;247(5 Pt 1):G486–G493. doi: 10.1152/ajpgi.1984.247.5.G486. [DOI] [PubMed] [Google Scholar]
  3. Benoit J. N., Zimmerman B., Premen A. J., Go V. L., Granger D. N. Role of glucagon in splanchnic hyperemia of chronic portal hypertension. Am J Physiol. 1986 Nov;251(5 Pt 1):G674–G677. doi: 10.1152/ajpgi.1986.251.5.G674. [DOI] [PubMed] [Google Scholar]
  4. Blanchet L., Lebrec D. Changes in splanchnic blood flow in portal hypertensive rats. Eur J Clin Invest. 1982 Aug;12(4):327–330. doi: 10.1111/j.1365-2362.1982.tb02240.x. [DOI] [PubMed] [Google Scholar]
  5. Busse R., Mülsch A. Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Lett. 1990 Nov 26;275(1-2):87–90. doi: 10.1016/0014-5793(90)81445-t. [DOI] [PubMed] [Google Scholar]
  6. Chojkier M., Groszmann R. J. Measurement of portal-systemic shunting in the rat by using gamma-labeled microspheres. Am J Physiol. 1981 May;240(5):G371–G375. doi: 10.1152/ajpgi.1981.240.5.G371. [DOI] [PubMed] [Google Scholar]
  7. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  8. Gardiner S. M., Compton A. M., Bennett T., Palmer R. M., Moncada S. Control of regional blood flow by endothelium-derived nitric oxide. Hypertension. 1990 May;15(5):486–492. doi: 10.1161/01.hyp.15.5.486. [DOI] [PubMed] [Google Scholar]
  9. Groszmann R. J., Vorobioff J., Riley E. Splanchnic hemodynamics in portal-hypertensive rats: measurement with gamma-labeled microspheres. Am J Physiol. 1982 Feb;242(2):G156–G160. doi: 10.1152/ajpgi.1982.242.2.G156. [DOI] [PubMed] [Google Scholar]
  10. Hibbs J. B., Jr, Taintor R. R., Vavrin Z., Rachlin E. M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988 Nov 30;157(1):87–94. doi: 10.1016/s0006-291x(88)80015-9. [DOI] [PubMed] [Google Scholar]
  11. Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kelm M., Feelisch M., Spahr R., Piper H. M., Noack E., Schrader J. Quantitative and kinetic characterization of nitric oxide and EDRF released from cultured endothelial cells. Biochem Biophys Res Commun. 1988 Jul 15;154(1):236–244. doi: 10.1016/0006-291x(88)90675-4. [DOI] [PubMed] [Google Scholar]
  13. Kiel J. W., Pitts V., Benoit J. N., Granger D. N., Shepherd A. P. Reduced vascular sensitivity to norepinephrine in portal-hypertensive rats. Am J Physiol. 1985 Feb;248(2 Pt 1):G192–G195. doi: 10.1152/ajpgi.1985.248.2.G192. [DOI] [PubMed] [Google Scholar]
  14. Knowles R. G., Merrett M., Salter M., Moncada S. Differential induction of brain, lung and liver nitric oxide synthase by endotoxin in the rat. Biochem J. 1990 Sep 15;270(3):833–836. doi: 10.1042/bj2700833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kravetz D., Bosch J., Arderiu M. T., Pizcueta M. P., Casamitjana R., Rivera F., Rodés J. Effects of somatostatin on splanchnic hemodynamics and plasma glucagon in portal hypertensive rats. Am J Physiol. 1988 Mar;254(3 Pt 1):G322–G328. doi: 10.1152/ajpgi.1988.254.3.G322. [DOI] [PubMed] [Google Scholar]
  16. Kravetz D., Sikuler E., Groszmann R. J. Splanchnic and systemic hemodynamics in portal hypertensive rats during hemorrhage and blood volume restitution. Gastroenterology. 1986 May;90(5 Pt 1):1232–1240. doi: 10.1016/0016-5085(86)90390-2. [DOI] [PubMed] [Google Scholar]
  17. Lebrec D., Bataille C., Bercoff E., Valla D. Hemodynamic changes in patients with portal venous obstruction. Hepatology. 1983 Jul-Aug;3(4):550–553. doi: 10.1002/hep.1840030412. [DOI] [PubMed] [Google Scholar]
  18. Marletta M. A., Yoon P. S., Iyengar R., Leaf C. D., Wishnok J. S. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry. 1988 Nov 29;27(24):8706–8711. doi: 10.1021/bi00424a003. [DOI] [PubMed] [Google Scholar]
  19. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  20. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  21. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  22. Palmer R. M., Rees D. D., Ashton D. S., Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1251–1256. doi: 10.1016/s0006-291x(88)81362-7. [DOI] [PubMed] [Google Scholar]
  23. Parsons C. G., Headley P. M. Spinal antinociceptive actions of mu- and kappa-opioids: the importance of stimulus intensity in determining 'selectivity' between reflexes to different modalities of noxious stimulus. Br J Pharmacol. 1989 Oct;98(2):523–532. doi: 10.1111/j.1476-5381.1989.tb12626.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pique J. M., Whittle B. J., Esplugues J. V. The vasodilator role of endogenous nitric oxide in the rat gastric microcirculation. Eur J Pharmacol. 1989 Dec 19;174(2-3):293–296. doi: 10.1016/0014-2999(89)90324-5. [DOI] [PubMed] [Google Scholar]
  25. Piqué J. M., Pizcueta P., Pérez Ayuso R. M., Bosch J. Effects of propranolol on gastric microcirculation and acid secretion in portal hypertensive rats. Hepatology. 1990 Sep;12(3 Pt 1):476–480. doi: 10.1002/hep.1840120305. [DOI] [PubMed] [Google Scholar]
  26. Pizcueta M. P., Casamitjana R., Bosch J., Rodés J. Decreased systemic vascular sensitivity to norepinephrine in portal hypertensive rats: role of hyperglucagonism. Am J Physiol. 1990 Feb;258(2 Pt 1):G191–G195. doi: 10.1152/ajpgi.1990.258.2.G191. [DOI] [PubMed] [Google Scholar]
  27. Pizcueta M. P., de Lacy A. M., Kravetz D., Bosch J., Rodés J. Propranolol decreases portal pressure without changing portocollateral resistance in cirrhotic rats. Hepatology. 1989 Dec;10(6):953–957. doi: 10.1002/hep.1840100610. [DOI] [PubMed] [Google Scholar]
  28. Radomski M. W., Palmer R. M., Moncada S. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci U S A. 1990 Dec;87(24):10043–10047. doi: 10.1073/pnas.87.24.10043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rees D. D., Cellek S., Palmer R. M., Moncada S. Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. Biochem Biophys Res Commun. 1990 Dec 14;173(2):541–547. doi: 10.1016/s0006-291x(05)80068-3. [DOI] [PubMed] [Google Scholar]
  30. Rees D. D., Palmer R. M., Hodson H. F., Moncada S. A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol. 1989 Feb;96(2):418–424. doi: 10.1111/j.1476-5381.1989.tb11833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Richardson P. D., Withrington P. G. The inhibition by glucagon of the vasoconstrictor actions of noradrenaline, angiotensin and vasopressin on the hepatic arterial vascular bed of the dog. Br J Pharmacol. 1976 May;57(1):93–102. doi: 10.1111/j.1476-5381.1976.tb07659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sikuler E., Kravetz D., Groszmann R. J. Evolution of portal hypertension and mechanisms involved in its maintenance in a rat model. Am J Physiol. 1985 Jun;248(6 Pt 1):G618–G625. doi: 10.1152/ajpgi.1985.248.6.G618. [DOI] [PubMed] [Google Scholar]
  34. Stuehr D. J., Nathan C. F. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med. 1989 May 1;169(5):1543–1555. doi: 10.1084/jem.169.5.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vallance P., Collier J., Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989 Oct 28;2(8670):997–1000. doi: 10.1016/s0140-6736(89)91013-1. [DOI] [PubMed] [Google Scholar]
  36. Vallance P., Collier J., Moncada S. Nitric oxide synthesised from L-arginine mediates endothelium dependent dilatation in human veins in vivo. Cardiovasc Res. 1989 Dec;23(12):1053–1057. doi: 10.1093/cvr/23.12.1053. [DOI] [PubMed] [Google Scholar]
  37. Vallance P., Moncada S. Hyperdynamic circulation in cirrhosis: a role for nitric oxide? Lancet. 1991 Mar 30;337(8744):776–778. doi: 10.1016/0140-6736(91)91384-7. [DOI] [PubMed] [Google Scholar]
  38. Vorobioff J., Bredfeldt J. E., Groszmann R. J. Hyperdynamic circulation in portal-hypertensive rat model: a primary factor for maintenance of chronic portal hypertension. Am J Physiol. 1983 Jan;244(1):G52–G57. doi: 10.1152/ajpgi.1983.244.1.G52. [DOI] [PubMed] [Google Scholar]
  39. Walder C. E., Thiemermann C., Vane J. R. The involvement of endothelium-derived relaxing factor in the regulation of renal cortical blood flow in the rat. Br J Pharmacol. 1991 Apr;102(4):967–973. doi: 10.1111/j.1476-5381.1991.tb12285.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Whittle B. J., Lopez-Belmonte J., Rees D. D. Modulation of the vasodepressor actions of acetylcholine, bradykinin, substance P and endothelin in the rat by a specific inhibitor of nitric oxide formation. Br J Pharmacol. 1989 Oct;98(2):646–652. doi: 10.1111/j.1476-5381.1989.tb12639.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES