Abstract
1. The purpose of the present study was to investigate the acute (single injection), direct (chronic treatment) and the long-lasting effects after exposure to the alpha 1/beta-adrenoceptor antagonist labetalol during rat brain development on adrenoceptors and monoamine metabolism. 2. In 10-day-old rat pups, subcutaneously administered labetalol (10 mg kg-1) passed the blood-brain barrier, reaching a level of 2.1 micrograms g-1 tissue in the brain 90 min after injection. 3. Chronic labetalol treatment (10 mg kg-1, s.c., twice daily) during the first 10 days of life significantly increased alpha 1-adrenoceptor binding in the hypothalamus (+39%), but not in the occipital cortex. 4. This chronic postnatal labetalol treatment did not result in long-lasting changes in alpha 1- and beta-receptors measured on day 60. 5. A single labetalol injection (10 mg kg-1, s.c.) on postnatal day 10 significantly increased noradrenaline (NA) metabolism in all brain regions tested (+25 to 105%), but had no effects on 5-hydroxytryptamine (5-HT) or dopamine metabolism. 6. Chronic labetalol treatment between postnatal (PN) days 1 and 10 also increased NA metabolism on PN 10 (3-methoxy-4-hydroxyphenylglycol (MHPG)/NA, +20 to 100%), suggesting that tolerance to the acute effect of labetalol did not occur. A slight increase in 5-HT metabolism (20%) was induced by the chronic labetalol treatment in the hippocampus and meso-limbic system. 7. In general, long-lasting effects on NA metabolism could not be detected on day 60 more than one month after the treatment. However, 5-HT metabolism was significantly increased in all four brain regions measured (+20 to 70%). 8. We conclude that chronic labetalol exposure during early postnatal rat brain development does not cause long-lasting changes in beta-receptor number or NA metabolism, but appears to be critical for the rate of 5-HT metabolism in later life.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aggerbeck M., Guellaen G., Hanoune J. Biochemical evidence for the dual action of labetalol on alpha- and beta-adrenoceptors. Br J Pharmacol. 1978 Apr;62(4):543–548. doi: 10.1111/j.1476-5381.1978.tb07759.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boer G. J., Feenstra M. G., Erdtsieck-Ernste B. H., Gorter J. A., Mirmiran M. Lasting effects of early noradrenergic receptor occupation on brain noradrenaline turnover and on beta-receptors. Dev Pharmacol Ther. 1990;15(3-4):224–233. doi: 10.1159/000457650. [DOI] [PubMed] [Google Scholar]
- Brittain R. T., Levy G. P. A review of the animal pharmacology of labetalol, a combined alpha- and beta-adrenoceptor-blocking drug. Br J Clin Pharmacol. 1976 Aug;3(4 Suppl 3):681–684. [PubMed] [Google Scholar]
- Bruinink A., Lichtensteiger W. Beta-adrenergic binding sites in fetal rat brain. J Neurochem. 1984 Aug;43(2):578–581. doi: 10.1111/j.1471-4159.1984.tb00937.x. [DOI] [PubMed] [Google Scholar]
- Coyle J. T. Biochemical aspects of neurotransmission in the developing brain. Int Rev Neurobiol. 1977;20:65–103. doi: 10.1016/s0074-7742(08)60651-0. [DOI] [PubMed] [Google Scholar]
- Dausse J. P., Le Quan-Bui K. H., Meyer P. Alpha 1- and alpha 2-adrenoceptors in rat cerebral cortex: effects of neonatal treatment with 6-hydroxydopamine. Eur J Pharmacol. 1982 Feb 19;78(1):15–20. doi: 10.1016/0014-2999(82)90367-3. [DOI] [PubMed] [Google Scholar]
- Del Río J., Montero D., De Ceballos M. L. Long-lasting changes after perinatal exposure to antidepressants. Prog Brain Res. 1988;73:173–187. doi: 10.1016/s0079-6123(08)60504-x. [DOI] [PubMed] [Google Scholar]
- Elam M., Svensson T. H., Thoren P. Differentiated cardiovascular afferent regulation of locus coeruleus neurons and sympathetic nerves. Brain Res. 1985 Dec 9;358(1-2):77–84. doi: 10.1016/0006-8993(85)90950-3. [DOI] [PubMed] [Google Scholar]
- Engel G., Hoyer D., Berthold R., Wagner H. (+/-)[125Iodo] cyanopindolol, a new ligand for beta-adrenoceptors: identification and quantitation of subclasses of beta-adrenoceptors in guinea pig. Naunyn Schmiedebergs Arch Pharmacol. 1981;317(4):277–285. doi: 10.1007/BF00501307. [DOI] [PubMed] [Google Scholar]
- Erdtsieck-Ernste B. H., Feenstra M. G., Boer G. J. Pre- and postnatal developmental changes of adrenoceptor subtypes in rat brain. J Neurochem. 1991 Sep;57(3):897–903. doi: 10.1111/j.1471-4159.1991.tb08235.x. [DOI] [PubMed] [Google Scholar]
- Erdtsieck-Ernste E. B., Feenstra M. G., Boer G. J., van Galen H. Chronic propranolol treatment in developing rats: acute and lasting effects on monoamines and beta-adrenergic receptors in the rat brain. Brain Res Bull. 1991 May;26(5):731–737. doi: 10.1016/0361-9230(91)90168-j. [DOI] [PubMed] [Google Scholar]
- Farmer J. B., Kennedy I., Levy G. P., Marshall R. J. Pharmacology of AH 5158; a drug which blocks both - and -adrenoceptors. Br J Pharmacol. 1972 Aug;45(4):660–675. doi: 10.1111/j.1476-5381.1972.tb08125.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feenstra M. G., Snijdewint F. G., Van Galen H., Boer G. J. Widespread alterations in central noradrenaline, dopamine, and serotonin systems in the Brattleboro rat not related to the local absence of vasopressin. Neurochem Res. 1990 Mar;15(3):283–288. doi: 10.1007/BF00968673. [DOI] [PubMed] [Google Scholar]
- Goa K. L., Benfield P., Sorkin E. M. Labetalol. A reappraisal of its pharmacology, pharmacokinetics and therapeutic use in hypertension and ischaemic heart disease. Drugs. 1989 May;37(5):583–627. doi: 10.2165/00003495-198937050-00002. [DOI] [PubMed] [Google Scholar]
- Haraldsson A., Geven W. Severe adverse effects of maternal labetalol in a premature infant. Acta Paediatr Scand. 1989 Nov;78(6):956–958. doi: 10.1111/j.1651-2227.1989.tb11183.x. [DOI] [PubMed] [Google Scholar]
- Harden T. K., Wolfe B. B., Sporn J. R., Poulos B. K., Molinoff P. B. Effects of 6-hydroxydopamine on the development of the beta adrenergic receptor/adenylate cyclase system in rat cerebral cortex. J Pharmacol Exp Ther. 1977 Oct;203(1):132–143. [PubMed] [Google Scholar]
- Howes L. G., Rowe P. R., Krum H., Louis W. J. The effects of a single dose of dilevalol on [3H]-noradrenaline plasma kinetics and plasma lipoprotein cholesterol concentrations. Br J Clin Pharmacol. 1990 Mar;29(3):281–287. doi: 10.1111/j.1365-2125.1990.tb03637.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson R. D., Iuvone P. M., Minneman K. P. Regulation of alpha-1 adrenergic receptor density and functional responsiveness in rat brain. J Pharmacol Exp Ther. 1987 Sep;242(3):842–849. [PubMed] [Google Scholar]
- Jouppila P., Kirkinen P., Koivula A., Ylikorkala O. Labetalol does not alter the placental and fetal blood flow or maternal prostanoids in pre-eclampsia. Br J Obstet Gynaecol. 1986 Jun;93(6):543–547. doi: 10.1111/j.1471-0528.1986.tb07951.x. [DOI] [PubMed] [Google Scholar]
- Keeton T. K., Hall J. S. The effect of propranolol on blood pressure and central MOPEG concentration in the conscious spontaneously hypertensive rat. Eur J Pharmacol. 1986 Jun 17;125(2):293–296. doi: 10.1016/0014-2999(86)90040-3. [DOI] [PubMed] [Google Scholar]
- Kohno Y., Tanaka M., Nakagawa R., Ida Y., Iimori K., Nagasaki N. Postnatal development of noradrenaline and 3-methoxy-4-hydroxyphenylethyleneglycol sulphate levels in rat brain regions. J Neurochem. 1982 Sep;39(3):878–881. doi: 10.1111/j.1471-4159.1982.tb07975.x. [DOI] [PubMed] [Google Scholar]
- Kubo T., Amano H., Misu Y. Regional changes in brain noradrenergic activity elicited by a decrease in blood pressure. J Pharmacobiodyn. 1988 Mar;11(3):198–201. doi: 10.1248/bpb1978.11.198. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Macpherson M., Broughton Pipkin F., Rutter N. The effect of maternal labetalol on the newborn infant. Br J Obstet Gynaecol. 1986 Jun;93(6):539–542. doi: 10.1111/j.1471-0528.1986.tb07950.x. [DOI] [PubMed] [Google Scholar]
- McPherson G. A., Summers R. J. Characterization and localization of [3H]-clonidine binding in membranes prepared from guinea-pig spleen. Clin Exp Pharmacol Physiol. 1982 Jan-Feb;9(1):77–87. doi: 10.1111/j.1440-1681.1982.tb00781.x. [DOI] [PubMed] [Google Scholar]
- Menkes D. B., Gallager D. W., Reinhard J. F., Jr, Aghajanian G. K. Alpha 1-adrenoceptor denervation supersensitivity in brain: physiological and receptor binding studies. Brain Res. 1983 Aug 1;272(1):1–12. doi: 10.1016/0006-8993(83)90358-x. [DOI] [PubMed] [Google Scholar]
- Michael C. A. Use of labetalol in the treatment of severe hypertension during pregnancy. Br J Clin Pharmacol. 1979;8(Suppl 2):211S–215S. [PMC free article] [PubMed] [Google Scholar]
- Miller J. C., Friedhoff A. J. Prenatal neurotransmitter programming of postnatal receptor function. Prog Brain Res. 1988;73:509–522. doi: 10.1016/S0079-6123(08)60523-3. [DOI] [PubMed] [Google Scholar]
- Misu Y., Kubo T. Presynaptic beta-adrenoceptors. Med Res Rev. 1986 Apr-Jun;6(2):197–225. doi: 10.1002/med.2610060204. [DOI] [PubMed] [Google Scholar]
- Morselli P. L., Boutroy M. J., Bianchetti G., Thénot J. P. Pharmacokinetics of antihypertensive drugs in the neonatal period. Dev Pharmacol Ther. 1989;13(2-4):190–198. doi: 10.1159/000457604. [DOI] [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Myers M. G., Lewis P. J., Reid J. L., Dollery C. T. Brain concentration of propranolol in relation to hypotensive effect in the rabbit with observations on brain propranolol levels in man. J Pharmacol Exp Ther. 1975 Feb;192(2):327–335. [PubMed] [Google Scholar]
- Neil-Dwyer G., Bartlett J., McAinsh J., Cruickshank J. M. Beta-adrenoceptor blockers and the blood-brian barrier. Br J Clin Pharmacol. 1981 Jun;11(6):549–553. doi: 10.1111/j.1365-2125.1981.tb01169.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nobin A., Björklund A. Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand Suppl. 1973;388:1–40. [PubMed] [Google Scholar]
- Nomura Y., Yotsumoto I., Motomori-Suzaki E., Kawai M., Segawa T. Influences of isoproterenol pretreatment on cerebral cortical bindings of [3H]clonidine and [3H]dihydroalprenolol in infant and adult rats. Brain Res. 1983 Sep;285(3):381–384. doi: 10.1016/0165-3806(83)90035-4. [DOI] [PubMed] [Google Scholar]
- Olson L., Boréus L. O., Seiger A. Histochemical demonstration and mapping of 5-hydroxytryptamine- and catecholamine-containing neuron systems in the human fetal brain. Z Anat Entwicklungsgesch. 1973 Apr 16;139(3):259–282. doi: 10.1007/BF00519968. [DOI] [PubMed] [Google Scholar]
- Pauwels P. J., Gommeren W., Van Lommen G., Janssen P. A., Leysen J. E. The receptor binding profile of the new antihypertensive agent nebivolol and its stereoisomers compared with various beta-adrenergic blockers. Mol Pharmacol. 1988 Dec;34(6):843–851. [PubMed] [Google Scholar]
- Peroutka S. J. 5-Hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization. Trends Neurosci. 1988 Nov;11(11):496–500. doi: 10.1016/0166-2236(88)90011-2. [DOI] [PubMed] [Google Scholar]
- Rogers R. C., Sibai B. M., Whybrew W. D. Labetalol pharmacokinetics in pregnancy-induced hypertension. Am J Obstet Gynecol. 1990 Feb;162(2):362–366. doi: 10.1016/0002-9378(90)90386-l. [DOI] [PubMed] [Google Scholar]
- Saleh M. I., Kostrzewa R. M. Impaired striatal dopamine receptor development: differential D-1 regulation in adults. Eur J Pharmacol. 1988 Sep 23;154(3):305–311. doi: 10.1016/0014-2999(88)90206-3. [DOI] [PubMed] [Google Scholar]
- Sedlock M. L., Edwards D. J. Opposite effects of chronic imipramine treatment on brain and urine MHPG levels in the rat. Biol Psychiatry. 1985 Aug;20(8):858–865. doi: 10.1016/0006-3223(85)90211-2. [DOI] [PubMed] [Google Scholar]
- Sibai B. M., Mabie W. C., Shamsa F., Villar M. A., Anderson G. D. A comparison of no medication versus methyldopa or labetalol in chronic hypertension during pregnancy. Am J Obstet Gynecol. 1990 Apr;162(4):960–967. doi: 10.1016/0002-9378(90)91297-p. [DOI] [PubMed] [Google Scholar]
- Wijnen H. J., De Kloet E. R., Versteeg D. H., De Jong W. Differences in regional brain catecholamine metabolism after a decrease in blood pressure. Life Sci. 1978 Dec 25;23(26):2587–2591. doi: 10.1016/0024-3205(78)90374-0. [DOI] [PubMed] [Google Scholar]
- Woods D. L., Malan A. F. Side effects of labetalol in newborn infants. Br J Obstet Gynaecol. 1983 Sep;90(9):876–876. doi: 10.1111/j.1471-0528.1983.tb09333.x. [DOI] [PubMed] [Google Scholar]
- van Veldhuizen M. J., Feenstra M. G., Boer G. J., Westerink B. H. Microdialysis studies on cortical noradrenaline release: basic characteristics, significance of extracellular calcium and massive post-mortem increase. Neurosci Lett. 1990 Nov 13;119(2):233–236. doi: 10.1016/0304-3940(90)90841-v. [DOI] [PubMed] [Google Scholar]
