Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Feb;105(2):321–328. doi: 10.1111/j.1476-5381.1992.tb14253.x

Effect of dihydropyridines on calcium channels in isolated smooth muscle cells from rat vena cava.

J Mironneau 1, T Yamamoto 1, I Sayet 1, S Arnaudeau 1, L Rakotoarisoa 1, C Mironneau 1
PMCID: PMC1908639  PMID: 1373097

Abstract

1. Whole-cell patch-clamp method was applied to single smooth muscle cells freshly isolated from the rat inferior vena cava. 2. Depolarizing pulses, applied from a holding potential of -90 mV, activated both Na+ and Ca2+ channels. The fast Na+ current was inhibited by nanomolar concentrations of tetrodotoxin (TTX). The slow Ba2+ current (measured in 5 mM Ba2+ solution) was inhibited by Cd2+ and modulated by dihydropyridine derivatives. When the cells were held at a holding potential of -80 mV, racemic Bay K 8644 increased the Ba2+ current (ED50 = 10 nM) while racemic isradipine inhibited the current (IC50 = 21 nM). 3. The voltage-dependency of isradipine blockade was assessed by determining the steady-state availability of the Ca2+ channels. From the shift of the inactivation curve in the presence of isradipine, we calculated a dissociation constant of 1.11 nM for inactivated Ca2+ channels. Scatchard plots of the specific binding of (+)-[3H]-isradipine obtained in intact strips incubated in 5.6 mM or 135 mM K+ solutions confirmed the voltage-dependency of isradipine binding. 4. Specific binding of (+)-[3H]-isradipine was completely displaced by unlabelled (+/-)-isradipine, with an IC50 of 15.1 nM. This value is similar to the IC50 for inhibition of the Ba2+ current (21 nM) in cells maintained at a holding potential of -80 mV. 5. Bay K 8644 had no effects on the Ba2+ current kinetics during a depolarizing test pulse. The steady-state inactivation-activation curves of Ba2+ current were not significantly shifted along the voltage axis.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
321

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson P. I., Bolton T. B., Lang R. J., MacKenzie I. Calcium currents in single isolated smooth muscle cells from the rabbit ear artery in normal-calcium and high-barium solutions. J Physiol. 1988 Nov;405:57–75. doi: 10.1113/jphysiol.1988.sp017321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amédée T., Renaud J. F., Jmari K., Lombet A., Mironneau J., Lazdunski M. The presence of Na+ channels in myometrial smooth muscle cells is revealed by specific neurotoxins. Biochem Biophys Res Commun. 1986 Jun 13;137(2):675–681. doi: 10.1016/0006-291x(86)91131-9. [DOI] [PubMed] [Google Scholar]
  3. Bean B. P., Cohen C. J., Tsien R. W. Lidocaine block of cardiac sodium channels. J Gen Physiol. 1983 May;81(5):613–642. doi: 10.1085/jgp.81.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bean B. P. Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6388–6392. doi: 10.1073/pnas.81.20.6388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bean B. P., Sturek M., Puga A., Hermsmeyer K. Calcium channels in muscle cells isolated from rat mesenteric arteries: modulation by dihydropyridine drugs. Circ Res. 1986 Aug;59(2):229–235. doi: 10.1161/01.res.59.2.229. [DOI] [PubMed] [Google Scholar]
  6. Caffrey J. M., Josephson I. R., Brown A. M. Calcium channels of amphibian stomach and mammalian aorta smooth muscle cells. Biophys J. 1986 Jun;49(6):1237–1242. doi: 10.1016/S0006-3495(86)83753-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dacquet C., Loirand G., Rakotoarisoa L., Mironneau C., Mironneau J. (+)-[3H]-PN 200-110 binding to cell membranes and intact strips of portal vein smooth muscle: characterization and modulation by membrane potential and divalent cations. Br J Pharmacol. 1989 May;97(1):256–262. doi: 10.1111/j.1476-5381.1989.tb11949.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Droogmans G., Callewaert G. Ca2+-channel current and its modification by the dihydropyridine agonist BAY k 8644 in isolated smooth muscle cells. Pflugers Arch. 1986 Mar;406(3):259–265. doi: 10.1007/BF00640911. [DOI] [PubMed] [Google Scholar]
  9. Friedman M. E., Suarez-Kurtz G., Kaczorowski G. J., Katz G. M., Reuben J. P. Two calcium currents in a smooth muscle cell line. Am J Physiol. 1986 Apr;250(4 Pt 2):H699–H703. doi: 10.1152/ajpheart.1986.250.4.H699. [DOI] [PubMed] [Google Scholar]
  10. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  11. Hamilton S. L., Yatani A., Brush K., Schwartz A., Brown A. M. A comparison between the binding and electrophysiological effects of dihydropyridines on cardiac membranes. Mol Pharmacol. 1987 Mar;31(3):221–231. [PubMed] [Google Scholar]
  12. Hess P., Lansman J. B., Tsien R. W. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature. 1984 Oct 11;311(5986):538–544. doi: 10.1038/311538a0. [DOI] [PubMed] [Google Scholar]
  13. Hirst G. D., Silverberg G. D., van Helden D. F. The action potential and underlying ionic currents in proximal rat middle cerebral arterioles. J Physiol. 1986 Feb;371:289–304. doi: 10.1113/jphysiol.1986.sp015975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hisada T., Kurachi Y., Sugimoto T. Properties of membrane currents in isolated smooth muscle cells from guinea-pig trachea. Pflugers Arch. 1990 Apr;416(1-2):151–161. doi: 10.1007/BF00370237. [DOI] [PubMed] [Google Scholar]
  15. Honoré E., Amédée T., Martin C., Dacquet C., Mironneau C., Mironneau J. Calcium channel current and its sensitivity to (+) isradipine in cultured pregnant rat myometrial cells. An electrophysiological and a binding study. Pflugers Arch. 1989 Aug;414(4):477–483. doi: 10.1007/BF00585060. [DOI] [PubMed] [Google Scholar]
  16. Hoshi T., Smith S. J. Large depolarization induces long openings of voltage-dependent calcium channels in adrenal chromaffin cells. J Neurosci. 1987 Feb;7(2):571–580. doi: 10.1523/JNEUROSCI.07-02-00571.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hughes A. D., Hering S., Bolton T. B. Evidence that agonist and antagonist enantiomers of the dihydropyridine PN 202-791 act at different sites on the voltage-dependent calcium channel of vascular muscle. Br J Pharmacol. 1990 Sep;101(1):3–5. doi: 10.1111/j.1476-5381.1990.tb12076.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Inoue Y., Xiong Z. L., Kitamura K., Kuriyama H. Modulation produced by nifedipine of the unitary Ba current of dispersed smooth muscle cells of the rabbit ileum. Pflugers Arch. 1989 Sep;414(5):534–542. doi: 10.1007/BF00580988. [DOI] [PubMed] [Google Scholar]
  19. Kamp T. J., Sanguinetti M. C., Miller R. J. Voltage- and use-dependent modulation of cardiac calcium channels by the dihydropyridine (+)-202-791. Circ Res. 1989 Feb;64(2):338–351. doi: 10.1161/01.res.64.2.338. [DOI] [PubMed] [Google Scholar]
  20. Kokubun S., Prod'hom B., Becker C., Porzig H., Reuter H. Studies on Ca channels in intact cardiac cells: voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers. Mol Pharmacol. 1986 Dec;30(6):571–584. [PubMed] [Google Scholar]
  21. Lacerda A. E., Brown A. M. Nonmodal gating of cardiac calcium channels as revealed by dihydropyridines. J Gen Physiol. 1989 Jun;93(6):1243–1273. doi: 10.1085/jgp.93.6.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Loirand G., Mironneau C., Mironneau J., Pacaud P. Two types of calcium currents in single smooth muscle cells from rat portal vein. J Physiol. 1989 May;412:333–349. doi: 10.1113/jphysiol.1989.sp017619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Loirand G., Pacaud P., Mironneau C., Mironneau J. Evidence for two distinct calcium channels in rat vascular smooth muscle cells in short-term primary culture. Pflugers Arch. 1986 Nov;407(5):566–568. doi: 10.1007/BF00657519. [DOI] [PubMed] [Google Scholar]
  24. Markwardt F., Nilius B. Modulation of calcium channel currents in guinea-pig single ventricular heart cells by the dihydropyridine Bay K 8644. J Physiol. 1988 May;399:559–575. doi: 10.1113/jphysiol.1988.sp017096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marthan R., Martin C., Amédée T., Mironneau J. Calcium channel currents in isolated smooth muscle cells from human bronchus. J Appl Physiol (1985) 1989 Apr;66(4):1706–1714. doi: 10.1152/jappl.1989.66.4.1706. [DOI] [PubMed] [Google Scholar]
  26. Martin C., Arnaudeau S., Jmari K., Rakotoarisoa L., Sayet I., Dacquet C., Mironneau C., Mironneau J. Identification and properties of voltage-sensitive sodium channels in smooth muscle cells from pregnant rat myometrium. Mol Pharmacol. 1990 Nov;38(5):667–673. [PubMed] [Google Scholar]
  27. Matsuda J. J., Volk K. A., Shibata E. F. Calcium currents in isolated rabbit coronary arterial smooth muscle myocytes. J Physiol. 1990 Aug;427:657–680. doi: 10.1113/jphysiol.1990.sp018192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mekata F., Nagatsu I. Electrophysiology and innervation of the smooth muscle of dog inferior vena cava. J Physiol. 1982 Dec;333:201–211. doi: 10.1113/jphysiol.1982.sp014449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mironneau J., Martin C., Arnaudeau S., Jmari K., Rakotoarisoa L., Sayet I., Mironneau C. High-affinity binding sites for [3H]saxitoxin are associated with voltage-dependent sodium channels in portal vein smooth muscle. Eur J Pharmacol. 1990 Aug 10;184(2-3):315–319. doi: 10.1016/0014-2999(90)90624-f. [DOI] [PubMed] [Google Scholar]
  30. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  31. Ohya Y., Sperelakis N. Fast Na+ and slow Ca2+ channels in single uterine muscle cells from pregnant rats. Am J Physiol. 1989 Aug;257(2 Pt 1):C408–C412. doi: 10.1152/ajpcell.1989.257.2.C408. [DOI] [PubMed] [Google Scholar]
  32. Okabe K., Kitamura K., Kuriyama H. The existence of a highly tetrodotoxin sensitive Na channel in freshly dispersed smooth muscle cells of the rabbit main pulmonary artery. Pflugers Arch. 1988 Apr;411(4):423–428. doi: 10.1007/BF00587722. [DOI] [PubMed] [Google Scholar]
  33. Rakotoarisoa L., Sayet I., Mironneau C., Mironneau J. Selective modulation by membrane potential of desmethoxyverapamil binding to calcium channels in rat portal vein. J Pharmacol Exp Ther. 1990 Dec;255(3):942–947. [PubMed] [Google Scholar]
  34. Sanguinetti M. C., Kass R. S. Voltage-dependent block of calcium channel current in the calf cardiac Purkinje fiber by dihydropyridine calcium channel antagonists. Circ Res. 1984 Sep;55(3):336–348. doi: 10.1161/01.res.55.3.336. [DOI] [PubMed] [Google Scholar]
  35. Sanguinetti M. C., Krafte D. S., Kass R. S. Voltage-dependent modulation of Ca channel current in heart cells by Bay K8644. J Gen Physiol. 1986 Sep;88(3):369–392. doi: 10.1085/jgp.88.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sturek M., Hermsmeyer K. Calcium and sodium channels in spontaneously contracting vascular muscle cells. Science. 1986 Jul 25;233(4762):475–478. doi: 10.1126/science.2425434. [DOI] [PubMed] [Google Scholar]
  37. Terada K., Nakao K., Okabe K., Kitamura K., Kuriyama H. Action of the 1,4-dihydropyridine derivative, KW-3049, on the smooth muscle membrane of the rabbit mesenteric artery. Br J Pharmacol. 1987 Nov;92(3):615–625. doi: 10.1111/j.1476-5381.1987.tb11364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weiland G. A., Molinoff P. B. Quantitative analysis of drug-receptor interactions: I. Determination of kinetic and equilibrium properties. Life Sci. 1981 Jul 27;29(4):313–330. doi: 10.1016/0024-3205(81)90324-6. [DOI] [PubMed] [Google Scholar]
  39. Yatani A., Seidel C. L., Allen J., Brown A. M. Whole-cell and single-channel calcium currents of isolated smooth muscle cells from saphenous vein. Circ Res. 1987 Apr;60(4):523–533. doi: 10.1161/01.res.60.4.523. [DOI] [PubMed] [Google Scholar]
  40. Yoshino M., Someya T., Nishio A., Yabu H. Whole-cell and unitary Ca channel currents in mammalian intestinal smooth muscle cells: evidence for the existence of two types of Ca channels. Pflugers Arch. 1988 Feb;411(2):229–231. doi: 10.1007/BF00582322. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES