Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Nov;70(11):7940–7947. doi: 10.1128/jvi.70.11.7940-7947.1996

Rotavirus VP1 alone specifically binds to the 3' end of viral mRNA, but the interaction is not sufficient to initiate minus-strand synthesis.

J T Patton 1
PMCID: PMC190866  PMID: 8892917

Abstract

Recent studies have shown that disrupted (open) rotavirus cores have an associated replicase activity which supports the synthesis of dsRNA from viral mRNA in a cell-free system (D. Chen, C. Q.-Y. Zeng, M. J. Wentz, M. Gorziglia, M. K. Estes, and R. F. Ramig, J. Virol. 68:7030-7039, 1994). To determine which of the core proteins, VP1, VP2, or VP3, recognizes the template mRNA during RNA replication, SA11 open cores were incubated with 32P-labeled RNA probes of viral and nonviral origin and the reaction mixtures were analyzed for the formation of RNA-protein complexes by gel mobility shift assay. In mixtures containing a probe representing the 3' end of SA11 gene 8 mRNA, two closely migrating RNA-protein complexes, designated s and f, were detected. The interaction between the RNA and protein of the s and f complexes was shown to be specific by competitive binding assay with tRNA and brome mosaic virus RNA. By electrophoretic analysis of RNA-protein complexes recovered from gels, VP1 was shown to be the only viral protein component of the complexes, thereby indicating that VP1 specifically recognizes the 3' end of gene 8 mRNA. Analysis of VP1 purified from open cores by glycerol gradient centrifugation verified that VP1 recognizes the 3' end of viral mRNA but also showed that in the absence of other viral proteins, VP1 lacks replicase activity. When reconstituted with VP2-rich portions of the gradient, VP1 stimulated levels of replicase activity severalfold. These data indicate that VP1 can bind to viral mRNA in the absence of any other viral proteins and suggest that VP2 must interact with the RNA-protein complex before VP1 gains replicase activity.

Full Text

The Full Text of this article is available as a PDF (425.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bican P., Cohen J., Charpilienne A., Scherrer R. Purification and characterization of bovine rotavirus cores. J Virol. 1982 Sep;43(3):1113–1117. doi: 10.1128/jvi.43.3.1113-1117.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blacklow N. R., Greenberg H. B. Viral gastroenteritis. N Engl J Med. 1991 Jul 25;325(4):252–264. doi: 10.1056/NEJM199107253250406. [DOI] [PubMed] [Google Scholar]
  3. Boyle J. F., Holmes K. V. RNA-binding proteins of bovine rotavirus. J Virol. 1986 May;58(2):561–568. doi: 10.1128/jvi.58.2.561-568.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen D., Zeng C. Q., Wentz M. J., Gorziglia M., Estes M. K., Ramig R. F. Template-dependent, in vitro replication of rotavirus RNA. J Virol. 1994 Nov;68(11):7030–7039. doi: 10.1128/jvi.68.11.7030-7039.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clapp L. L., Patton J. T. Rotavirus morphogenesis: domains in the major inner capsid protein essential for binding to single-shelled particles and for trimerization. Virology. 1991 Feb;180(2):697–708. doi: 10.1016/0042-6822(91)90083-n. [DOI] [PubMed] [Google Scholar]
  6. Cohen J., Charpilienne A., Chilmonczyk S., Estes M. K. Nucleotide sequence of bovine rotavirus gene 1 and expression of the gene product in baculovirus. Virology. 1989 Jul;171(1):131–140. doi: 10.1016/0042-6822(89)90519-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fukuhara N., Nishikawa K., Gorziglia M., Kapikian A. Z. Nucleotide sequence of gene segment 1 of a porcine rotavirus strain. Virology. 1989 Dec;173(2):743–749. doi: 10.1016/0042-6822(89)90590-4. [DOI] [PubMed] [Google Scholar]
  8. Gallegos C. O., Patton J. T. Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles. Virology. 1989 Oct;172(2):616–627. doi: 10.1016/0042-6822(89)90204-3. [DOI] [PubMed] [Google Scholar]
  9. Imai M., Akatani K., Ikegami N., Furuichi Y. Capped and conserved terminal structures in human rotavirus genome double-stranded RNA segments. J Virol. 1983 Jul;47(1):125–136. doi: 10.1128/jvi.47.1.125-136.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Konarska M. M., Sharp P. A. Interactions between small nuclear ribonucleoprotein particles in formation of spliceosomes. Cell. 1987 Jun 19;49(6):763–774. doi: 10.1016/0092-8674(87)90614-3. [DOI] [PubMed] [Google Scholar]
  11. Labbé M., Baudoux P., Charpilienne A., Poncet D., Cohen J. Identification of the nucleic acid binding domain of the rotavirus VP2 protein. J Gen Virol. 1994 Dec;75(Pt 12):3423–3430. doi: 10.1099/0022-1317-75-12-3423. [DOI] [PubMed] [Google Scholar]
  12. Labbé M., Charpilienne A., Crawford S. E., Estes M. K., Cohen J. Expression of rotavirus VP2 produces empty corelike particles. J Virol. 1991 Jun;65(6):2946–2952. doi: 10.1128/jvi.65.6.2946-2952.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Liu M., Mattion N. M., Estes M. K. Rotavirus VP3 expressed in insect cells possesses guanylyltransferase activity. Virology. 1992 May;188(1):77–84. doi: 10.1016/0042-6822(92)90736-9. [DOI] [PubMed] [Google Scholar]
  15. Mansell E. A., Patton J. T. Rotavirus RNA replication: VP2, but not VP6, is necessary for viral replicase activity. J Virol. 1990 Oct;64(10):4988–4996. doi: 10.1128/jvi.64.10.4988-4996.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McCrae M. A., McCorquodale J. G. Molecular biology of rotaviruses. V. Terminal structure of viral RNA species. Virology. 1983 Apr 15;126(1):204–212. doi: 10.1016/0042-6822(83)90472-5. [DOI] [PubMed] [Google Scholar]
  17. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mitchell D. B., Both G. W. Completion of the genomic sequence of the simian rotavirus SA11: nucleotide sequences of segments 1, 2, and 3. Virology. 1990 Jul;177(1):324–331. doi: 10.1016/0042-6822(90)90487-c. [DOI] [PubMed] [Google Scholar]
  19. Patton J. T. Structure and function of the rotavirus RNA-binding proteins. J Gen Virol. 1995 Nov;76(Pt 11):2633–2644. doi: 10.1099/0022-1317-76-11-2633. [DOI] [PubMed] [Google Scholar]
  20. Patton J. T. Synthesis of simian rotavirus SA11 double-stranded RNA in a cell-free system. Virus Res. 1986 Dec;6(3):217–233. doi: 10.1016/0168-1702(86)90071-7. [DOI] [PubMed] [Google Scholar]
  21. Patton J. T., Wentz M., Xiaobo J., Ramig R. F. cis-Acting signals that promote genome replication in rotavirus mRNA. J Virol. 1996 Jun;70(6):3961–3971. doi: 10.1128/jvi.70.6.3961-3971.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pizarro J. L., Sandino A. M., Pizarro J. M., Fernández J., Spencer E. Characterization of rotavirus guanylyltransferase activity associated with polypeptide VP3. J Gen Virol. 1991 Feb;72(Pt 2):325–332. doi: 10.1099/0022-1317-72-2-325. [DOI] [PubMed] [Google Scholar]
  23. Poncet D., Aponte C., Cohen J. Rotavirus protein NSP3 (NS34) is bound to the 3' end consensus sequence of viral mRNAs in infected cells. J Virol. 1993 Jun;67(6):3159–3165. doi: 10.1128/jvi.67.6.3159-3165.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Poncet D., Laurent S., Cohen J. Four nucleotides are the minimal requirement for RNA recognition by rotavirus non-structural protein NSP3. EMBO J. 1994 Sep 1;13(17):4165–4173. doi: 10.1002/j.1460-2075.1994.tb06734.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Prasad B. V., Wang G. J., Clerx J. P., Chiu W. Three-dimensional structure of rotavirus. J Mol Biol. 1988 Jan 20;199(2):269–275. doi: 10.1016/0022-2836(88)90313-0. [DOI] [PubMed] [Google Scholar]
  26. Valenzuela S., Pizarro J., Sandino A. M., Vásquez M., Fernández J., Hernández O., Patton J., Spencer E. Photoaffinity labeling of rotavirus VP1 with 8-azido-ATP: identification of the viral RNA polymerase. J Virol. 1991 Jul;65(7):3964–3967. doi: 10.1128/jvi.65.7.3964-3967.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wentz M. J., Patton J. T., Ramig R. F. The 3'-terminal consensus sequence of rotavirus mRNA is the minimal promoter of negative-strand RNA synthesis. J Virol. 1996 Nov;70(11):7833–7841. doi: 10.1128/jvi.70.11.7833-7841.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yeager M., Dryden K. A., Olson N. H., Greenberg H. B., Baker T. S. Three-dimensional structure of rhesus rotavirus by cryoelectron microscopy and image reconstruction. J Cell Biol. 1990 Jun;110(6):2133–2144. doi: 10.1083/jcb.110.6.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zeng C. Q., Labbé M., Cohen J., Prasad B. V., Chen D., Ramig R. F., Estes M. K. Characterization of rotavirus VP2 particles. Virology. 1994 May 15;201(1):55–65. doi: 10.1006/viro.1994.1265. [DOI] [PubMed] [Google Scholar]
  30. Zeng C. Q., Wentz M. J., Cohen J., Estes M. K., Ramig R. F. Characterization and replicase activity of double-layered and single-layered rotavirus-like particles expressed from baculovirus recombinants. J Virol. 1996 May;70(5):2736–2742. doi: 10.1128/jvi.70.5.2736-2742.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES