Abstract
1. The role of adrenergic mechanisms in the regulation of cholesterol metabolism was investigated by studying the effects of 6-hydroxydopamine (6-OHDA) on serum cholesterol levels and on the activities of 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase, acyl coenzyme A: cholesterol-O-acyl-transferase (ACAT) in the livers and intestines, and cholesterol 7 alpha-hydroxylase in the livers of male New Zealand White rabbits. 2. Total serum cholesterol levels were significantly reduced (P less than 0.01) in 6-OHDA-treated animals. This was reflected in the very low density lipoprotein, low density lipoprotein and high density lipoprotein fractions. The reduction in lipoprotein cholesterol levels reflected reduced cholesterol proportions in the lipoprotein fractions. 3. The 6-OHDA-treated animals also had significantly lower activities of intestinal (P less than 0.001) and hepatic (P less than 0.01) HMGCoA reductase. The specific activities of intestinal ACAT, hepatic ACAT and cholesterol 7 alpha-hydroxylase were comparable in both groups. 4. In contrast to the results observed in vivo, 6-OHDA did not have any in vitro effect on cholesterol biosynthesis in cultured human leucocytes. 5. This latter finding suggests that the effects of 6-OHDA on cellular cholesterol biosynthesis in vivo are indirect, possibly resulting from the known toxic effect of this drug in sympathetic nerve terminals, and imply a potential role for the sympathetic nervous system in the regulation of cellular cholesterol biosynthesis in vivo.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balasubramaniam S., Mitropoulos K. A., Venkatesan S. Rat-liver acyl-CoA: cholesterol acyltransferase. Eur J Biochem. 1978 Oct;90(2):377–383. doi: 10.1111/j.1432-1033.1978.tb12614.x. [DOI] [PubMed] [Google Scholar]
- Barrett A. M. The role of plasma free fatty acids in the elevation of plasma cholesterol and phospholipids produced by adrenaline. J Endocrinol. 1966 Nov;36(3):301–316. doi: 10.1677/joe.0.0360301. [DOI] [PubMed] [Google Scholar]
- Cruise J. L., Houck K. A., Michalopoulos G. K. Induction of DNA synthesis in cultured rat hepatocytes through stimulation of alpha 1 adrenoreceptor by norepinephrine. Science. 1985 Feb 15;227(4688):749–751. doi: 10.1126/science.2982212. [DOI] [PubMed] [Google Scholar]
- Cryer P. E., Haymond M. W., Santiago J. V., Shah S. D. Norepinephrine and epinephrine release and adrenergic mediation of smoking-associated hemodynamic and metabolic events. N Engl J Med. 1976 Sep 9;295(11):573–577. doi: 10.1056/NEJM197609092951101. [DOI] [PubMed] [Google Scholar]
- Cryer P. E. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med. 1980 Aug 21;303(8):436–444. doi: 10.1056/NEJM198008213030806. [DOI] [PubMed] [Google Scholar]
- Cuthbert J. A., East C. A., Bilheimer D. W., Lipsky P. E. Detection of familial hypercholesterolemia by assaying functional low-density-lipoprotein receptors on lymphocytes. N Engl J Med. 1986 Apr 3;314(14):879–883. doi: 10.1056/NEJM198604033141404. [DOI] [PubMed] [Google Scholar]
- Cuthbert J. A., Lipsky P. E. Sterol metabolism and lymphocyte function: inhibition of endogenous sterol biosynthesis does not prevent mitogen-induced human T lymphocyte activation. J Immunol. 1980 May;124(5):2240–2246. [PubMed] [Google Scholar]
- DURY A. Effects of epinephrine on lipid partition and metabolism in the rabbit. Circ Res. 1957 Jan;5(1):47–53. doi: 10.1161/01.res.5.1.47. [DOI] [PubMed] [Google Scholar]
- Demacker P. N., van Sommeren-Zondag D. F., Stalenhoef A. F., Stuyt P. M., van't Laar A. Ultracentrifugation in swinging-bucket and fixed-angle rotors evaluated for isolation and determination of high-density lipoprotein subfractions HDL2 and HDL3. Clin Chem. 1983 Apr;29(4):656–663. [PubMed] [Google Scholar]
- Deverey R., O'Donnell L., Tomkin G. H. Effect of catecholamines on the hepatic rate-limiting enzymes of cholesterol metabolism in normally fed and cholesterol-fed rabbits. Biochim Biophys Acta. 1986 Jul 11;887(2):173–181. doi: 10.1016/0167-4889(86)90052-2. [DOI] [PubMed] [Google Scholar]
- Devery R., Tomkin G. H. The effect of insulin and catecholamines on the activities of 3-hydroxy-3-methyl glutaryl coenzyme A reductase and acyl-coenzyme A: cholesterol-o-acyltransferase in isolated rat hepatocytes. Diabetologia. 1986 Feb;29(2):122–124. doi: 10.1007/BF00456123. [DOI] [PubMed] [Google Scholar]
- Dietschy J. M., Siperstein M. D. Cholesterol synthesis by the gastrointestinal tract: localization and mechanisms of control. J Clin Invest. 1965 Aug;44(8):1311–1327. doi: 10.1172/JCI105237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards P. A., Lemongello D., Fogelman A. M. The effect of glucagon, norepinephrine, and dibutyryl cyclic AMP on cholesterol efflux and on the activity of 3-hydroxy-3-methylglutaryl CoA reductase in rat hepatocytes. J Lipid Res. 1979 Jan;20(1):2–7. [PubMed] [Google Scholar]
- Edwards P. A. The influence of catecholamines and cyclic AMP on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and lipid biosynthesis in isolated rat hepatocytes. Arch Biochem Biophys. 1975 Sep;170(1):188–203. doi: 10.1016/0003-9861(75)90110-1. [DOI] [PubMed] [Google Scholar]
- Fain J. N., Garcĩa-Sáinz J. A. Adrenergic regulation of adipocyte metabolism. J Lipid Res. 1983 Aug;24(8):945–966. [PubMed] [Google Scholar]
- George R., Ramasarma T. Nature of the stimulation of biogenesis of cholesterol in the liver by noradrenaline. Biochem J. 1977 Mar 15;162(3):493–499. doi: 10.1042/bj1620493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman H., Jacobowitz D. Correlation of norepinephrine content with observations of adrenergic nerves after a single dose of 6-hydroxydopamine in the rat. J Pharmacol Exp Ther. 1971 Jan;176(1):119–133. [PubMed] [Google Scholar]
- Kostrzewa R. M., Jacobowitz D. M. Pharmacological actions of 6-hydroxydopamine. Pharmacol Rev. 1974 Sep;26(3):199–288. [PubMed] [Google Scholar]
- Kunihara M., Oshima T. Effects of epinephrine on plasma cholesterol levels in rats. J Lipid Res. 1983 May;24(5):639–644. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mistry P., Miller N. E., Laker M., Hazzard W. R., Lewis B. Individual variation in the effects of dietary cholesterol on plasma lipoproteins and cellular cholesterol homeostasis in man. Studies of low density lipoprotein receptor activity and 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in blood mononuclear cells. J Clin Invest. 1981 Feb;67(2):493–502. doi: 10.1172/JCI110058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitropoulos K. A., Balasubramaniam S. The role of glucocorticoids in the regulation of the diurnal rhythm of hepatic beta-hydroxy-beta-methylglutaryl-coenzyme A reductase and cholesterol 7 alpha-hydroxylase. Biochem J. 1976 Oct 15;160(1):49–55. doi: 10.1042/bj1600049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Donnell L., Owens D., McGee C., Devery R., Hession P., Collins P., Johnson A., Tomkin G. Effects of catecholamines on serum lipoproteins of normally fed and cholesterol-fed rabbits. Metabolism. 1988 Oct;37(10):910–915. doi: 10.1016/0026-0495(88)90145-x. [DOI] [PubMed] [Google Scholar]
- Owens D., Collins P., Johnson A., Tighe O., Robinson K., Tomkin G. H. Hypercholesterolaemia: simvastatin and pravastatin alter cholesterol metabolism by different mechanisms. Biochim Biophys Acta. 1991 Apr 3;1082(3):303–309. doi: 10.1016/0005-2760(91)90206-w. [DOI] [PubMed] [Google Scholar]
- Owens D., Collins P., Johnson A., Tomkin G. Cellular cholesterol metabolism in mitogen-stimulated lymphocytes--requirement for de novo synthesis. Biochim Biophys Acta. 1990 Feb 19;1051(2):138–143. doi: 10.1016/0167-4889(90)90185-g. [DOI] [PubMed] [Google Scholar]
- Roeschlau P., Bernt E., Gruber W. Enzymatic determination of total cholesterol in serum. Z Klin Chem Klin Biochem. 1974 May;12(5):226–226. [PubMed] [Google Scholar]
- Rouffy J., Jaillard J. Comparative effects of prazosin and atenolol on plasma lipids in hypertensive patients. Am J Med. 1984 Feb 27;76(2A):105–108. doi: 10.1016/0002-9343(84)90966-5. [DOI] [PubMed] [Google Scholar]
- SHAFRIR E., SUSSMAN K. E., STEINBERG D. Role of the pituitary and the adrenal in the mobilization of free fatty acids and lipoproteins. J Lipid Res. 1960 Oct;1:459–465. [PubMed] [Google Scholar]
- STONE C. A., PORTER C. C., STAVORSKI J. M., LUDDEN C. T., TOTARO J. A. ANTAGONISM OF CERTAIN EFFECTS OF CATECHOLAMINE-DEPLETING AGENTS BY ANTIDEPRESSANT AND RELATED DRUGS. J Pharmacol Exp Ther. 1964 May;144:196–204. [PubMed] [Google Scholar]
- Scott L. M., Tomkin G. H. Cholesterol metabolism: regulatory effects of the vagus in the normal and diabetic animal. Diabetes Res. 1985 Nov;2(6):313–317. [PubMed] [Google Scholar]
- Shefer S., Cheng F. W., Hauser S., Batta A. K., Salen G. Regulation of bile acid synthesis. Measurement of cholesterol 7 alpha-hydroxylase activity in rat liver microsomal preparations in the absence of endogenous cholesterol. J Lipid Res. 1981 Mar;22(3):532–536. [PubMed] [Google Scholar]
- Silverberg A. B., Shah S. D., Haymond M. W., Cryer P. E. Norepinephrine: hormone and neurotransmitter in man. Am J Physiol. 1978 Mar;234(3):E252–E256. doi: 10.1152/ajpendo.1978.234.3.E252. [DOI] [PubMed] [Google Scholar]
- Taggart P., Carruthers M. Endogenous hyperlipidaemia induced by emotional stress of racing driving. Lancet. 1971 Feb 20;1(7695):363–366. doi: 10.1016/s0140-6736(71)92207-0. [DOI] [PubMed] [Google Scholar]
- Takayama M., Itoh S., Nagasaki T., Tanimizu I. A new enzymatic method for determination of serum choline-containing phospholipids. Clin Chim Acta. 1977 Aug 15;79(1):93–98. doi: 10.1016/0009-8981(77)90465-x. [DOI] [PubMed] [Google Scholar]
- Thoenen H., Tranzer J. P. Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-Hydroxydopamine. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1968;261(3):271–288. doi: 10.1007/BF00536990. [DOI] [PubMed] [Google Scholar]