Abstract
1. This study examined the effects of dietary essential fatty acid supplementation (5% (w/w) evening primrose oil) upon sciatic motor nerve conduction velocity and 86Rb+ pumping in sciatic nerve endoneurial preparations in rats with 4 to 5 weeks of streptozotocin-induced diabetes. 2. Control diabetic rats (dietary supplementation with 5% (w/w) hydrogenated coconut oil) exhibited a reduction in motor nerve conduction velocity (16%; P less than 0.05) compared to similarly-fed non-diabetic controls, but there was no significant alteration in ouabain-sensitive 86Rb+ pumping, a parameter reflecting activity of the Na+/K+ pump. 3. Treatment of diabetic rats with evening primrose oil prevented completely the development of the motor nerve conduction velocity deficit without affecting the severity of diabetes. Evening primrose oil treatment did not significantly affect motor nerve conduction velocity of non-diabetic animals. 4. Evening primrose oil treatment caused a significant reduction in activity of the Na+/K+ pump in sciatic nerves of diabetic animals (45%; P less than 0.05). 5. These results suggest that the acute conduction velocity defect arising in streptozotocin-diabetic rats, and the actions of evening primrose oil upon this, are independent of any effect on activity of the Na+/K+ pump. Other putative mechanisms are discussed.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed K., Thomas B. S. The effects of long chain fatty acids on sodium plus potassium ion-stimulated adenosine triphosphatase of rat brain. J Biol Chem. 1971 Jan 10;246(1):103–109. [PubMed] [Google Scholar]
- Calcutt N. A., Tomlinson D. R., Biswas S. Coexistence of nerve conduction deficit with increased Na(+)-K(+)-ATPase activity in galactose-fed mice. Implications for polyol pathway and diabetic neuropathy. Diabetes. 1990 Jun;39(6):663–666. doi: 10.2337/diab.39.6.663. [DOI] [PubMed] [Google Scholar]
- Calcutt N. A., Tomlinson D. R., Willars G. B. Ganglioside treatment of diabetic rats; effects on nerve adenosine triphosphatase activity and motor nerve conduction velocity. Life Sci. 1988;42(16):1515–1520. doi: 10.1016/0024-3205(88)90008-2. [DOI] [PubMed] [Google Scholar]
- Dyck P. J. Hypoxic neuropathy: does hypoxia play a role in diabetic neuropathy? The 1988 Robert Wartenberg lecture. Neurology. 1989 Jan;39(1):111–118. doi: 10.1212/wnl.39.1.111. [DOI] [PubMed] [Google Scholar]
- Dyck P. J., Karnes J. L., Daube J., O'Brien P., Service F. J. Clinical and neuropathological criteria for the diagnosis and staging of diabetic polyneuropathy. Brain. 1985 Dec;108(Pt 4):861–880. doi: 10.1093/brain/108.4.861. [DOI] [PubMed] [Google Scholar]
- Eck M. G., Wynn J. O., Carter W. J., Faas F. H. Fatty acid desaturation in experimental diabetes mellitus. Diabetes. 1979 May;28(5):479–485. doi: 10.2337/diab.28.5.479. [DOI] [PubMed] [Google Scholar]
- Gabbay R. A., Siconolfi-Baez L., Lebovitz H. E. Calcium-dependent protein kinase activity is decreased in diabetic rat sciatic nerve. Endocrinology. 1990 Sep;127(3):1194–1198. doi: 10.1210/endo-127-3-1194. [DOI] [PubMed] [Google Scholar]
- Greene D. A., De Jesus P. V., Jr, Winegrad A. I. Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest. 1975 Jun;55(6):1326–1336. doi: 10.1172/JCI108052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greene D. A., Lattimer S. A. Action of sorbinil in diabetic peripheral nerve. Relationship of polyol (sorbitol) pathway inhibition to a myo-inositol-mediated defect in sodium-potassium ATPase activity. Diabetes. 1984 Aug;33(8):712–716. doi: 10.2337/diab.33.8.712. [DOI] [PubMed] [Google Scholar]
- Greene D. A., Lattimer S. A. Impaired rat sciatic nerve sodium-potassium adenosine triphosphatase in acute streptozocin diabetes and its correction by dietary myo-inositol supplementation. J Clin Invest. 1983 Sep;72(3):1058–1063. doi: 10.1172/JCI111030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greene D. A., Lattimer S. A., Sima A. A. Are disturbances of sorbitol, phosphoinositide, and Na+-K+-ATPase regulation involved in pathogenesis of diabetic neuropathy? Diabetes. 1988 Jun;37(6):688–693. doi: 10.2337/diab.37.6.688. [DOI] [PubMed] [Google Scholar]
- Gregersen G. Variations in motor conduction velocity produced by acute changes of the metabolic state in diabetic patients. Diabetologia. 1968 Nov;4(5):273–277. doi: 10.1007/BF01309900. [DOI] [PubMed] [Google Scholar]
- Horrobin D. F., Durand L. G., Manku M. S. Prostaglandin E1 modifies nerve conduction and interferes with local anaesthetic action. Prostaglandins. 1977 Jul;14(1):103–108. doi: 10.1016/0090-6980(77)90158-7. [DOI] [PubMed] [Google Scholar]
- Horrobin D. F., Manku M. S., Huang Y. S. Effects of essential fatty acids on prostaglandin biosynthesis. Biomed Biochim Acta. 1984;43(8-9):S114–S120. [PubMed] [Google Scholar]
- Horrobin D. F. The roles of essential fatty acids in the development of diabetic neuropathy and other complications of diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids. 1988;31(3):181–197. [PubMed] [Google Scholar]
- Jamal G. A., Carmichael H., Weir A. I. Gamma-linolenic acid in diabetic neuropathy. Lancet. 1986 May 10;1(8489):1098–1098. doi: 10.1016/s0140-6736(86)91365-6. [DOI] [PubMed] [Google Scholar]
- Julu P. O. Essential fatty acids prevent slowed nerve conduction in streptozotocin diabetic rats. J Diabet Complications. 1988 Oct-Dec;2(4):185–188. doi: 10.1016/s0891-6632(88)80006-0. [DOI] [PubMed] [Google Scholar]
- Kelly R. A., O'Hara D. S., Mitch W. E., Smith T. W. Identification of NaK-ATPase inhibitors in human plasma as nonesterified fatty acids and lysophospholipids. J Biol Chem. 1986 Sep 5;261(25):11704–11711. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lambourne J. E., Brown A. M., Calcutt N., Tomlinson D. R., Willars G. B. Adenosine triphosphatase in nerves and ganglia of rats with streptozotocin-induced diabetes or galactosaemia; effects of aldose reductase inhibition. Diabetologia. 1988 Jun;31(6):379–384. doi: 10.1007/BF02341507. [DOI] [PubMed] [Google Scholar]
- Lin C. J., Peterson R., Eichberg J. The fatty acid composition of glycerolipids in nerve, brain, and other tissues of the streptozotocin diabetic rat. Neurochem Res. 1985 Nov;10(11):1453–1465. [PubMed] [Google Scholar]
- Lombet A., Laduron P., Mourre C., Jacomet Y., Lazdunski M. Axonal transport of the voltage-dependent Na+ channel protein identified by its tetrodotoxin binding site in rat sciatic nerves. Brain Res. 1985 Oct 14;345(1):153–158. doi: 10.1016/0006-8993(85)90846-7. [DOI] [PubMed] [Google Scholar]
- Mayer J. H., Tomlinson D. R. Axonal transport of cholinergic transmitter enzymes in vagus and sciatic nerves of rats with acute experimental diabetes mellitus; correlation with motor nerve conduction velocity and effects of insulin. Neuroscience. 1983 Aug;9(4):951–957. doi: 10.1016/0306-4522(83)90284-1. [DOI] [PubMed] [Google Scholar]
- Mayer J. H., Tomlinson D. R. Prevention of defects of axonal transport and nerve conduction velocity by oral administration of myo-inositol or an aldose reductase inhibitor in streptozotocin-diabetic rats. Diabetologia. 1983 Nov;25(5):433–438. doi: 10.1007/BF00282524. [DOI] [PubMed] [Google Scholar]
- Meiri K. F., McLean W. G. Axonal transport of protein in motor fibres of experimentally diabetic rats--fast anterograde transport. Brain Res. 1982 Apr 22;238(1):77–88. doi: 10.1016/0006-8993(82)90772-7. [DOI] [PubMed] [Google Scholar]
- Myher J. J., Marai L., Kuksis A. Acylglycerol structure of peanut oils of different atherogenic potential. Lipids. 1977 Oct;12(10):775–785. doi: 10.1007/BF02533264. [DOI] [PubMed] [Google Scholar]
- Poisson J. P. Comparative in vivo and in vitro study of the influence of experimental diabetes on rat liver linoleic acid delta 6- and delta 5-desaturation. Enzyme. 1985;34(1):1–14. doi: 10.1159/000469353. [DOI] [PubMed] [Google Scholar]
- Robinson J. P., Willars G. B., Tomlinson D. R., Keen P. Axonal transport and tissue contents of substance P in rats with long-term streptozotocin-diabetes. Effects of the aldose reductase inhibitor 'statil'. Brain Res. 1987 Nov 24;426(2):339–348. doi: 10.1016/0006-8993(87)90887-0. [DOI] [PubMed] [Google Scholar]
- Schmidt R. E., Matschinsky F. M., Godfrey D. A., Williams A. D., McDougal D. B., Jr Fast and slow axoplasmic flow in sciatic nerve of diabetic rats. Diabetes. 1975 Dec;24(12):1081–1085. doi: 10.2337/diab.24.12.1081. [DOI] [PubMed] [Google Scholar]
- Simmons D. A., Winegrad A. I., Martin D. B. Significance of tissue myo-inositol concentrations in metabolic regulation in nerve. Science. 1982 Aug 27;217(4562):848–851. doi: 10.1126/science.6285474. [DOI] [PubMed] [Google Scholar]
- Simpson C. M., Hawthorne J. N. Reduced Na+ + K+-ATPase activity in peripheral nerve of streptozotocin-diabetic rats: a role for protein kinase C? Diabetologia. 1988 May;31(5):297–303. doi: 10.1007/BF00277411. [DOI] [PubMed] [Google Scholar]
- Spritz N., Singh H., Marinan B. Decrease in myelin content of rabbit sciatic nerve with aging and diabetes. Diabetes. 1975 Jul;24(7):680–683. doi: 10.2337/diab.24.7.680. [DOI] [PubMed] [Google Scholar]
- Swann A. C. Free fatty acids and (Na+,K+)-ATPase: effects on cation regulation, enzyme conformation, and interactions with ethanol. Arch Biochem Biophys. 1984 Sep;233(2):354–361. doi: 10.1016/0003-9861(84)90456-9. [DOI] [PubMed] [Google Scholar]
- Swarts H. G., Schuurmans Stekhoven F. M., De Pont J. J. Binding of unsaturated fatty acids to Na+, K(+)-ATPase leading to inhibition and inactivation. Biochim Biophys Acta. 1990 May 9;1024(1):32–40. doi: 10.1016/0005-2736(90)90205-3. [DOI] [PubMed] [Google Scholar]
- Thomas P. K., Wright D. W., Tzebelikos E. Amino acid uptake by dorsal root ganglia from streptozotocin-diabetic rats. J Neurol Neurosurg Psychiatry. 1984 Sep;47(9):912–916. doi: 10.1136/jnnp.47.9.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomlinson D. R., Moriarty R. J., Mayer J. H. Prevention and reversal of defective axonal transport and motor nerve conduction velocity in rats with experimental diabetes by treatment with the aldose reductase inhibitor Sorbinil. Diabetes. 1984 May;33(5):470–476. doi: 10.2337/diab.33.5.470. [DOI] [PubMed] [Google Scholar]
- Tomlinson D. R., Robinson J. P., Compton A. M., Keen P. Essential fatty acid treatment--effects on nerve conduction, polyol pathway and axonal transport in streptozotocin diabetic rats. Diabetologia. 1989 Sep;32(9):655–659. doi: 10.1007/BF00274252. [DOI] [PubMed] [Google Scholar]
- Tuck R. R., Schmelzer J. D., Low P. A. Endoneurial blood flow and oxygen tension in the sciatic nerves of rats with experimental diabetic neuropathy. Brain. 1984 Sep;107(Pt 3):935–950. doi: 10.1093/brain/107.3.935. [DOI] [PubMed] [Google Scholar]
- Yasuda H., Sonobe M., Hatanaka I., Yamashita M., Miyamoto Y., Terada M., Amenomori M., Kikkawa R., Shigeta Y., Motoyama Y. A new prostaglandin E1 analogue (TFC-612) prevents a decrease in motor nerve conduction velocity in streptozocin-diabetic rats. Biochem Biophys Res Commun. 1988 Jan 15;150(1):225–230. doi: 10.1016/0006-291x(88)90509-8. [DOI] [PubMed] [Google Scholar]
- Yasuda H., Sonobe M., Yamashita M., Terada M., Hatanaka I., Huitian Z., Shigeta Y. Effect of prostaglandin E1 analogue TFC 612 on diabetic neuropathy in streptozocin-induced diabetic rats. Comparison with aldose reductase inhibitor ONO 2235. Diabetes. 1989 Jul;38(7):832–838. doi: 10.2337/diab.38.7.832. [DOI] [PubMed] [Google Scholar]
