Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Nov;70(11):7958–7964. doi: 10.1128/jvi.70.11.7958-7964.1996

T-cell dysfunctions in hu-PBL-SCID mice infected with human immunodeficiency virus (HIV) shortly after reconstitution: in vivo effects of HIV on highly activated human immune cells.

P Rizza 1, S M Santini 1, M A Logozzi 1, C Lapenta 1, P Sestili 1, G Gherardi 1, R Lande 1, M Spada 1, S Parlato 1, F Belardelli 1, S Fais 1
PMCID: PMC190868  PMID: 8892919

Abstract

The state of activation of the immune system may be an important factor which renders a host more receptive to human immunodeficiency virus (HIV) and more vulnerable to its effects. To explore this issue with a practical in vivo model, we developed a modified protocol of HIV infection in hu-PBL-SCID mice. First, we assessed the time course of activation of human peripheral blood lymphocytes (hu-PBL) in the peritoneal cavity of SCID mice. At 2 to 24 h after the intraperitoneal injection into SCID mice, there was a clear-cut increase in the percentage of hu-PBL expressing early activation markers (CD69), concomitant with the release of soluble intercellular adhesion molecule-1 (sICAM-1) and the soluble interleukin-2 receptor (sIL-2R) and with the accumulation of mRNAs for a number of human cytokines. At 2 weeks, virtually all of the hu-PBL expressed the memory phenotype (CD45RO) and HLA-DR antigens as well. Cells collected from the SCID mouse peritoneum at 2 and 24 h after transplantation were fully susceptible to in vitro infection with HIV type 1 (HIV-1) in the absence of either IL-2 or mitogens. The injection of HIV into hu-PBL-SCID mice at 2 h after reconstitution resulted in a generalized and productive HIV infection of the xenochimeras. This early HIV-1 infection resulted in a dramatic depletion of human CD4+ cells and in decreased levels of sICAM-1 (in the peritoneal lavage fluid) as well as of sIL-2R and immunoglobulins M and A (in the serum). Enzyme-linked immunosorbent assay and/or reverse transcriptase PCR analysis showed higher levels of IL-4, IL-5, and IL-10 in the HIV-infected animals than in control hu-PBL-SCID mice, while gamma interferon levels in the two groups were comparable. When we compared the current model of HIV-1 infection at 2 weeks after the intraperitoneal injection of the hu-PBL in the SCID mice with the model described here, we found that the majority of immune dysfunctions induced in the 2-h infection of the xenochimeras are not inducible in the 2-week infection. This supports the concept that the state of activation of human cells at the moment of the in vivo infection with HIV-1 is a crucial factor in determining the immune derangement observed in AIDS patients. These results show that some immunological dysfunctions induced by HIV infection in AIDS patients can be mimicked in this xenochimeric model. Thus, the hu-PBL-SCID mouse model may be useful in exploring, in vivo, the relevance of hu-PBL activation and differentiation in HIV-1 infection and for testing therapeutic intervention directed towards either the virus or the immune system.

Full Text

The Full Text of this article is available as a PDF (320.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentwich Z., Kalinkovich A., Weisman Z. Immune activation is a dominant factor in the pathogenesis of African AIDS. Immunol Today. 1995 Apr;16(4):187–191. doi: 10.1016/0167-5699(95)80119-7. [DOI] [PubMed] [Google Scholar]
  2. Boirivant M., Fais S., Annibale B., Agostini D., Delle Fave G., Pallone F. Vasoactive intestinal polypeptide modulates the in vitro immunoglobulin A production by intestinal lamina propria lymphocytes. Gastroenterology. 1994 Mar;106(3):576–582. doi: 10.1016/0016-5085(94)90688-2. [DOI] [PubMed] [Google Scholar]
  3. Clerici M., Sarin A., Coffman R. L., Wynn T. A., Blatt S. P., Hendrix C. W., Wolf S. F., Shearer G. M., Henkart P. A. Type 1/type 2 cytokine modulation of T-cell programmed cell death as a model for human immunodeficiency virus pathogenesis. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11811–11815. doi: 10.1073/pnas.91.25.11811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clerici M., Shearer G. M. The Th1-Th2 hypothesis of HIV infection: new insights. Immunol Today. 1994 Dec;15(12):575–581. doi: 10.1016/0167-5699(94)90220-8. [DOI] [PubMed] [Google Scholar]
  5. Duchosal M. A., McConahey P. J., Robinson C. A., Dixon F. J. Transfer of human systemic lupus erythematosus in severe combined immunodeficient (SCID) mice. J Exp Med. 1990 Sep 1;172(3):985–988. doi: 10.1084/jem.172.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duplàa C., Couffinhal T., Labat L., Moreau C., Lamazière J. M., Bonnet J. Quantitative analysis of polymerase chain reaction products using biotinylated dUTP incorporation. Anal Biochem. 1993 Jul;212(1):229–236. doi: 10.1006/abio.1993.1316. [DOI] [PubMed] [Google Scholar]
  7. Ehlers S., Smith K. A. Differentiation of T cell lymphokine gene expression: the in vitro acquisition of T cell memory. J Exp Med. 1991 Jan 1;173(1):25–36. doi: 10.1084/jem.173.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fais S., Burgio V. L., Silvestri M., Capobianchi M. R., Pacchiarotti A., Pallone F. Multinucleated giant cells generation induced by interferon-gamma. Changes in the expression and distribution of the intercellular adhesion molecule-1 during macrophages fusion and multinucleated giant cell formation. Lab Invest. 1994 Nov;71(5):737–744. [PubMed] [Google Scholar]
  9. Folks T. M., Powell D., Lightfoote M., Koenig S., Fauci A. S., Benn S., Rabson A., Daugherty D., Gendelman H. E., Hoggan M. D. Biological and biochemical characterization of a cloned Leu-3- cell surviving infection with the acquired immune deficiency syndrome retrovirus. J Exp Med. 1986 Jul 1;164(1):280–290. doi: 10.1084/jem.164.1.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kamel-Reid S., Dick J. E. Engraftment of immune-deficient mice with human hematopoietic stem cells. Science. 1988 Dec 23;242(4886):1706–1709. doi: 10.1126/science.2904703. [DOI] [PubMed] [Google Scholar]
  11. Katsikis P. D., Wunderlich E. S., Smith C. A., Herzenberg L. A., Herzenberg L. A. Fas antigen stimulation induces marked apoptosis of T lymphocytes in human immunodeficiency virus-infected individuals. J Exp Med. 1995 Jun 1;181(6):2029–2036. doi: 10.1084/jem.181.6.2029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kollmann T. R., Pettoello-Mantovani M., Zhuang X., Kim A., Hachamovitch M., Smarnworawong P., Rubinstein A., Goldstein H. Disseminated human immunodeficiency virus 1 (HIV-1) infection in SCID-hu mice after peripheral inoculation with HIV-1. J Exp Med. 1994 Feb 1;179(2):513–522. doi: 10.1084/jem.179.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krams S. M., Dorshkind K., Gershwin M. E. Generation of biliary lesions after transfer of human lymphocytes into severe combined immunodeficient (SCID) mice. J Exp Med. 1989 Dec 1;170(6):1919–1930. doi: 10.1084/jem.170.6.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Locardi C., Puddu P., Ferrantini M., Parlanti E., Sestili P., Varano F., Belardelli F. Persistent infection of normal mice with human immunodeficiency virus. J Virol. 1992 Mar;66(3):1649–1654. doi: 10.1128/jvi.66.3.1649-1654.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McCune J. M., Namikawa R., Kaneshima H., Shultz L. D., Lieberman M., Weissman I. L. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988 Sep 23;241(4873):1632–1639. doi: 10.1126/science.241.4873.1632. [DOI] [PubMed] [Google Scholar]
  16. Mosier D. E., Gulizia R. J., Baird S. M., Wilson D. B., Spector D. H., Spector S. A. Human immunodeficiency virus infection of human-PBL-SCID mice. Science. 1991 Feb 15;251(4995):791–794. doi: 10.1126/science.1990441. [DOI] [PubMed] [Google Scholar]
  17. Mosier D. E., Gulizia R. J., Baird S. M., Wilson D. B. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988 Sep 15;335(6187):256–259. doi: 10.1038/335256a0. [DOI] [PubMed] [Google Scholar]
  18. Mosier D. E., Gulizia R. J., MacIsaac P. D., Corey L., Greenberg P. D. Resistance to human immunodeficiency virus 1 infection of SCID mice reconstituted with peripheral blood leukocytes from donors vaccinated with vaccinia gp160 and recombinant gp160. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2443–2447. doi: 10.1073/pnas.90.6.2443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mosier D. E., Gulizia R. J., MacIsaac P. D., Torbett B. E., Levy J. A. Rapid loss of CD4+ T cells in human-PBL-SCID mice by noncytopathic HIV isolates. Science. 1993 Apr 30;260(5108):689–692. doi: 10.1126/science.8097595. [DOI] [PubMed] [Google Scholar]
  20. Mosier D., Sieburg H. Macrophage-tropic HIV: critical for AIDS pathogenesis? Immunol Today. 1994 Jul;15(7):332–339. doi: 10.1016/0167-5699(94)90081-7. [DOI] [PubMed] [Google Scholar]
  21. Namikawa R., Weilbaecher K. N., Kaneshima H., Yee E. J., McCune J. M. Long-term human hematopoiesis in the SCID-hu mouse. J Exp Med. 1990 Oct 1;172(4):1055–1063. doi: 10.1084/jem.172.4.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Paganelli R., Scala E., Ansotegui I. J., Ausiello C. M., Halapi E., Fanales-Belasio E., D'Offizi G., Mezzaroma I., Pandolfi F., Fiorilli M. CD8+ T lymphocytes provide helper activity for IgE synthesis in human immunodeficiency virus-infected patients with hyper-IgE. J Exp Med. 1995 Jan 1;181(1):423–428. doi: 10.1084/jem.181.1.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Parren P. W., Ditzel H. J., Gulizia R. J., Binley J. M., Barbas C. F., 3rd, Burton D. R., Mosier D. E. Protection against HIV-1 infection in hu-PBL-SCID mice by passive immunization with a neutralizing human monoclonal antibody against the gp120 CD4-binding site. AIDS. 1995 Jun;9(6):F1–F6. doi: 10.1097/00002030-199506000-00001. [DOI] [PubMed] [Google Scholar]
  24. Quinn T. C., Piot P., McCormick J. B., Feinsod F. M., Taelman H., Kapita B., Stevens W., Fauci A. S. Serologic and immunologic studies in patients with AIDS in North America and Africa. The potential role of infectious agents as cofactors in human immunodeficiency virus infection. JAMA. 1987 May 15;257(19):2617–2621. [PubMed] [Google Scholar]
  25. Schuitemaker H., Kootstra N. A., Fouchier R. A., Hooibrink B., Miedema F. Productive HIV-1 infection of macrophages restricted to the cell fraction with proliferative capacity. EMBO J. 1994 Dec 15;13(24):5929–5936. doi: 10.1002/j.1460-2075.1994.tb06938.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stevenson M., Stanwick T. L., Dempsey M. P., Lamonica C. A. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J. 1990 May;9(5):1551–1560. doi: 10.1002/j.1460-2075.1990.tb08274.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tary-Lehmann M., Lehmann P. V., Schols D., Roncarolo M. G., Saxon A. Anti-SCID mouse reactivity shapes the human CD4+ T cell repertoire in hu-PBL-SCID chimeras. J Exp Med. 1994 Nov 1;180(5):1817–1827. doi: 10.1084/jem.180.5.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tary-Lehmann M., Saxon A. Human mature T cells that are anergic in vivo prevail in SCID mice reconstituted with human peripheral blood. J Exp Med. 1992 Feb 1;175(2):503–516. doi: 10.1084/jem.175.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tary-Lehmann M., Saxon A., Lehmann P. V. The human immune system in hu-PBL-SCID mice. Immunol Today. 1995 Nov;16(11):529–533. doi: 10.1016/0167-5699(95)80046-8. [DOI] [PubMed] [Google Scholar]
  30. Wachter H., Fuchs D., Hausen A., Reibnegger G., Werner E. R., Dierich M. P. Who will get AIDS? Lancet. 1986 Nov 22;2(8517):1216–1217. doi: 10.1016/s0140-6736(86)92220-8. [DOI] [PubMed] [Google Scholar]
  31. Walker W., Roberts C. W., Brewer J. M., Alexander J. Antibody responses to Toxoplasma gondii antigen in human peripheral blood lymphocyte-reconstituted severe-combined immunodeficient mice reproduce the immunological status of the lymphocyte donor. Eur J Immunol. 1995 May;25(5):1426–1430. doi: 10.1002/eji.1830250543. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES