Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Apr;105(4):811–816. doi: 10.1111/j.1476-5381.1992.tb09062.x

Sodium-dependence and ouabain-sensitivity of the synthesis of dopamine in renal tissues of the rat.

P Soares-da-Silva 1, M H Fernandes 1
PMCID: PMC1908707  PMID: 1504714

Abstract

1. The present study has examined the influence of sodium chloride (0-160 mM) and ouabain (100 and 500 microM), an inhibitor of the enzyme Na(+)-K+ ATPase, on the synthesis of dopamine in slices of rat renal cortex loaded with exogenous L-dihydroxyphenylalanine (L-DOPA). The deamination of newly-formed dopamine into 3,4-dihydroxyphenylacetic acid (DOPAC) was also examined. The assay of L-DOPA, dopamine and DOPAC in kidney slices was performed by high performance liquid chromatography (h.p.l.c.) with electrochemical detection. 2. The accumulation of newly-formed dopamine and DOPAC in kidney slices loaded with L-DOPA (50 and 100 microM) was found to be dependent on the concentration of NaCl in the medium. A similar picture could be observed for DOPAC. The fractional rate of accumulation (k; mM NaCl-1) was at 50 and 100 microM L-DOPA, respectively, 0.00305 +/- 0.00036 and 0.00328 +/- 0.00029 for dopamine and 0.00672 +/- 0.00072 and 0.00641 +/- 0.00069 for DOPAC. The sodium-dependent formation of dopamine was completely abolished when the experiments were performed in the absence of oxygen. 3. In experiments performed in the presence of 120 mM NaCl, but not in conditions of low sodium (20 mM NaCl in the medium), ouabain (100 and 500 microM) was found to inhibit the accumulation of newly-formed dopamine and DOPAC (14-57% reduction; P less than 0.05); this effect was more marked at 50 and 100 microM L-DOPA.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
811

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander R. W., Gill J. R., Jr, Yamabe H., Lovenberg W., Keiser H. R. Effects of dietary sodium and of acute saline infusion on the interrelationship between dopamine excretion and adrenergic activity in man. J Clin Invest. 1974 Jul;54(1):194–200. doi: 10.1172/JCI107743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURG M. B., ORLOFF J. Oxygen consumption and active transport in separated renal tubules. Am J Physiol. 1962 Aug;203:327–330. doi: 10.1152/ajplegacy.1962.203.2.327. [DOI] [PubMed] [Google Scholar]
  3. Baines A. D. Effects of salt intake and renal denervation on catecholamine catabolism and excretion. Kidney Int. 1982 Feb;21(2):316–322. doi: 10.1038/ki.1982.24. [DOI] [PubMed] [Google Scholar]
  4. Ball S. G., Oats N. S., Lee M. R. Urinary dopamine in man and rat: effects of inorganic salts on dopamine excretion. Clin Sci Mol Med. 1978 Aug;55(2):167–173. doi: 10.1042/cs0550167. [DOI] [PubMed] [Google Scholar]
  5. Bass A. S., Murphy M. B. Role of endogenous dopamine in the natriuresis accompanying various sodium challenges. Am J Hypertens. 1990 Jun;3(6 Pt 2):90S–92S. doi: 10.1093/ajh/3.6.90s. [DOI] [PubMed] [Google Scholar]
  6. Brodie B. B., Costa E., Dlabac A., Neff N. H., Smookler H. H. Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines. J Pharmacol Exp Ther. 1966 Dec;154(3):493–498. [PubMed] [Google Scholar]
  7. Cuche J. L., Kuchel O., Barbeau A., Boucher R., Genest J. Relationship between the adrenergic nervous system and renin during adaptation to upright posture: a possible role for 3,4-dihydroxyphenethylamine (dopamine). Clin Sci. 1972 Oct;43(4):481–491. doi: 10.1042/cs0430481. [DOI] [PubMed] [Google Scholar]
  8. Fernandes M. H., Pestana M., Soares-da-Silva P. Deamination of newly-formed dopamine in rat renal tissues. Br J Pharmacol. 1991 Mar;102(3):778–782. doi: 10.1111/j.1476-5381.1991.tb12250.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gill J. R., Jr, Güllner G., Lake C. R., Lakatua D. J., Lan G. Plasma and urinary catecholamines in salt-sensitive idiopathic hypertension. Hypertension. 1988 Apr;11(4):312–319. doi: 10.1161/01.hyp.11.4.312. [DOI] [PubMed] [Google Scholar]
  10. Goldstein D. S., Stull R., Eisenhofer G., Gill J. R., Jr Urinary excretion of dihydroxyphenylalanine and dopamine during alterations of dietary salt intake in humans. Clin Sci (Lond) 1989 May;76(5):517–522. doi: 10.1042/cs0760517. [DOI] [PubMed] [Google Scholar]
  11. Hagege J., Richet G. Proximal tubule dopamine histofluorescence in renal slices incubated with L-dopa. Kidney Int. 1985 Jan;27(1):3–8. doi: 10.1038/ki.1985.2. [DOI] [PubMed] [Google Scholar]
  12. Hayashi M., Yamaji Y., Kitajima W., Saruta T. Aromatic L-amino acid decarboxylase activity along the rat nephron. Am J Physiol. 1990 Jan;258(1 Pt 2):F28–F33. doi: 10.1152/ajprenal.1990.258.1.F28. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lang F., Messner G., Rehwald W. Electrophysiology of sodium-coupled transport in proximal renal tubules. Am J Physiol. 1986 Jun;250(6 Pt 2):F953–F962. doi: 10.1152/ajprenal.1986.250.6.F953. [DOI] [PubMed] [Google Scholar]
  15. Lee M. R., Critchley J. A., Gordon C. J., Makarananda K., Sriwatanakul K., Balali-Mood M., Boye G. L. Ethnic differences in the renal sodium dopamine relationship. A possible explanation for regional variations in the prevalence of hypertension? Am J Hypertens. 1990 Jun;3(6 Pt 2):100S–103S. doi: 10.1093/ajh/3.6.100s. [DOI] [PubMed] [Google Scholar]
  16. Soares-da-Silva P., Fernandes M. H. Inhibitory effects of guanosine 3':5'-cyclic monophosphate on the synthesis of dopamine in the rat kidney. Br J Pharmacol. 1991 Aug;103(4):1923–1927. doi: 10.1111/j.1476-5381.1991.tb12353.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Soares-da-Silva P., Fernandes M. H. Regulation of dopamine synthesis in the rat kidney. J Auton Pharmacol. 1990;10 (Suppl 1):s25–s30. doi: 10.1111/j.1474-8673.1990.tb00224.x. [DOI] [PubMed] [Google Scholar]
  18. Suzuki H., Nakane H., Kawamura M., Yoshizawa M., Takeshita E., Saruta T. Excretion and metabolism of dopa and dopamine by isolated perfused rat kidney. Am J Physiol. 1984 Sep;247(3 Pt 1):E285–E290. doi: 10.1152/ajpendo.1984.247.3.E285. [DOI] [PubMed] [Google Scholar]
  19. Ullrich K. J., Rumrich G., Klöss S. Sodium dependence of the amino acid transport in the proximal convolution of the rat kidney. Pflugers Arch. 1974;351(1):49–60. doi: 10.1007/BF00603510. [DOI] [PubMed] [Google Scholar]
  20. Williams G. H., Gordon M. S., Stuenkel C. A., Conlin P. R., Hollenberg N. K. Dopamine and nonmodulating hypertension. Am J Hypertens. 1990 Jun;3(6 Pt 2):112S–115S. doi: 10.1093/ajh/3.6.112s. [DOI] [PubMed] [Google Scholar]
  21. Young J. B. Regulation of urinary dopamine by protein and NaCl. A model of extraneuronal amine formation in kidney. Am J Hypertens. 1990 Jun;3(6 Pt 2):14S–17S. doi: 10.1093/ajh/3.6.14s. [DOI] [PubMed] [Google Scholar]
  22. Zeidel M. L., Silva P., Brenner B. M., Seifter J. L. cGMP mediates effects of atrial peptides on medullary collecting duct cells. Am J Physiol. 1987 Mar;252(3 Pt 2):F551–F559. doi: 10.1152/ajprenal.1987.252.3.F551. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES