Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Apr;105(4):857–862. doi: 10.1111/j.1476-5381.1992.tb09068.x

Evidence for an atypical, or beta 3-adrenoceptor in ferret tracheal epithelium.

S E Webber 1, M J Stock 1
PMCID: PMC1908722  PMID: 1354537

Abstract

1. A preparation of the ferret trachea in vitro was used to examine the effects of three selective beta-adrenoceptor agonists on lysozyme secretion from submucosal gland serous cells and epithelial albumin transport into tracheal mucus following sustained, submaximal stimulation of mucus production with methacholine (20 microM). 2. Prenalterol, salbutamol and BRL 37344 all enhanced methacholine-induced albumin output. BRL 37344 was 10,000 times more potent than salbutamol, and salbutamol was slightly more potent than prenalterol. The concentrations required to increase albumin output by 100% (EC100%) were 1.4 nM, 0.7 mM and approximately 1.0 mM for BRL 37344, salbutamol and prenalterol, respectively. All three agonists inhibited methacholine-induced lysozyme output, with salbutamol being 60 times more potent than BRL 37344, and BRL 37344 being approximately 100 times more potent than prenalterol. 3. The selective beta 2-adrenoceptor antagonist, ICI 118551, inhibited the increase in albumin output produced by BRL 37344, but much more potent at inhibiting the response to salbutamol; the pA2 for ICI 118551 was 5.55 and 7.18 (P less than 0.001) when the agonist was BRL 37344 and salbutamol, respectively. ICI 118551 also attenuated the inhibition of lysozyme output produced by the two agonists, but was 10-30 times more potent at inhibiting this response than the albumin response to BRL 37344 and salbutamol. 4. The greater potency (4-5 orders of magnitude) of BRL 37344, compared to the beta 1- (prenalterol) and beta 2- (salbutamol) adrenoceptor selective agonists, in stimulating methacholine-induced albumin transport suggests that tracheal epithelium possess an atypical, or beta 3-adrenoceptor similar to that previously reported for adipocytes and gastrointestinal smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
857

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arch J. R., Ainsworth A. T., Cawthorne M. A., Piercy V., Sennitt M. V., Thody V. E., Wilson C., Wilson S. Atypical beta-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature. 1984 May 10;309(5964):163–165. doi: 10.1038/309163a0. [DOI] [PubMed] [Google Scholar]
  2. Barnes P. J., Basbaum C. B., Nadel J. A., Roberts J. M. Localization of beta-adrenoreceptors in mammalian lung by light microscopic autoradiography. Nature. 1982 Sep 30;299(5882):444–447. doi: 10.1038/299444a0. [DOI] [PubMed] [Google Scholar]
  3. Bond R. A., Clarke D. E. Agonist and antagonist characterization of a putative adrenoceptor with distinct pharmacological properties from the alpha- and beta-subtypes. Br J Pharmacol. 1988 Nov;95(3):723–734. doi: 10.1111/j.1476-5381.1988.tb11698.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bowes D., Corrin B. Ultrastructural immunocytochemical localisation of lysozyme in human bronchial glands. Thorax. 1977 Apr;32(2):163–170. doi: 10.1136/thx.32.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Emorine L. J., Marullo S., Briend-Sutren M. M., Patey G., Tate K., Delavier-Klutchko C., Strosberg A. D. Molecular characterization of the human beta 3-adrenergic receptor. Science. 1989 Sep 8;245(4922):1118–1121. doi: 10.1126/science.2570461. [DOI] [PubMed] [Google Scholar]
  6. Feldman R. D., Brotherton A., Welsh M. J. Beta-adrenergic-mediated Cl secretion: evidence for additional non-cAMP-dependent pathway of effect. Am J Physiol. 1990 Dec;259(6 Pt 1):L426–L431. doi: 10.1152/ajplung.1990.259.6.L426. [DOI] [PubMed] [Google Scholar]
  7. Lands A. M., Arnold A., McAuliff J. P., Luduena F. P., Brown T. G., Jr Differentiation of receptor systems activated by sympathomimetic amines. Nature. 1967 May 6;214(5088):597–598. doi: 10.1038/214597a0. [DOI] [PubMed] [Google Scholar]
  8. MacKay D. How should values of pA2 and affinity constants for pharmacological competitive antagonists be estimated? J Pharm Pharmacol. 1978 May;30(5):312–313. doi: 10.1111/j.2042-7158.1978.tb13237.x. [DOI] [PubMed] [Google Scholar]
  9. Peatfield A. C., Richardson P. S. The control of mucin secretion into the lumen of the cat trachea by alpha- and beta-adrenoceptors, and their relative involvement during sympathetic nerve stimulation. Eur J Pharmacol. 1982 Jul 30;81(4):617–626. doi: 10.1016/0014-2999(82)90351-x. [DOI] [PubMed] [Google Scholar]
  10. Price A. M., Webber S. E., Widdicombe J. G. Transport of albumin by the rabbit trachea in vitro. J Appl Physiol (1985) 1990 Feb;68(2):726–730. doi: 10.1152/jappl.1990.68.2.726. [DOI] [PubMed] [Google Scholar]
  11. Webber S. E., Widdicombe J. G. The effect of vasoactive intestinal peptide on smooth muscle tone and mucus secretion from the ferret trachea. Br J Pharmacol. 1987 May;91(1):139–148. doi: 10.1111/j.1476-5381.1987.tb08992.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Webber S. E., Widdicombe J. G. The transport of albumin across the ferret in vitro whole trachea. J Physiol. 1989 Jan;408:457–472. doi: 10.1113/jphysiol.1989.sp017470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zaagsma J., Nahorski S. R. Is the adipocyte beta-adrenoceptor a prototype for the recently cloned atypical 'beta 3-adrenoceptor'? Trends Pharmacol Sci. 1990 Jan;11(1):3–7. doi: 10.1016/0165-6147(90)90032-4. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES