Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 May;115(1):67–72. doi: 10.1111/j.1476-5381.1995.tb16320.x

Electrophysiological actions of phenytoin on N-methyl-D-aspartate receptor-mediated responses in rat hippocampus in vitro.

A J Laffling 1, P Scherr 1, J G McGivern 1, L Patmore 1, R D Sheridan 1
PMCID: PMC1908748  PMID: 7647985

Abstract

1. The effects of the anticonvulsant, phenytoin, have been examined on N-methyl-D-aspartate (NMDA) receptor-mediated population spikes in the CA1 region of the rat hippocampus in vitro. 2. The 'conventional' (AMPA receptor-mediated) CA1 population spike, evoked by electrical stimulation of the Schaffer collateral/commissural pathway, was abolished by 5 min treatment with 5 x 10(-6) M 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), after which superfusion with a nominally Mg(2+)-free Krebs solution (containing 5 x 10(-6) M CNQX) led to the appearance of an epileptiform population spike which was fully developed by 30-40 min. 3. The epileptiform population spike was abolished by the non-competitive NMDA antagonist, dizocilpine (1 x 10(-6) M, 20-30 min) and inhibited by the competitive NMDA receptor antagonist, D-CPP (IC50 for reducing the amplitude of the first spike in the train = 8.3 x 10(-7) M), demonstrating that the response was mediated by activation of NMDA receptors and validating its use as an assay for antagonists acting at the NMDA receptor/channel complex. 4. Phenytoin (0.1, 0.3 and 1 x 10(-4) M applied cumulatively for 30 min at each concentration) failed to inhibit the NMDA receptor-mediated epileptiform population response (n = 7 slices).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
67

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreasen M., Lambert J. D., Jensen M. S. Effects of new non-N-methyl-D-aspartate antagonists on synaptic transmission in the in vitro rat hippocampus. J Physiol. 1989 Jul;414:317–336. doi: 10.1113/jphysiol.1989.sp017690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birnstiel S., Haas H. L. Anticonvulsants do not suppress long-term potentiation (LTP) in the rat hippocampus. Neurosci Lett. 1991 Jan 14;122(1):61–63. doi: 10.1016/0304-3940(91)90193-w. [DOI] [PubMed] [Google Scholar]
  3. Blake J. F., Yates R. G., Brown M. W., Collingridge G. L. 6-Cyano-7-nitroquinoxaline-2,3-dione as an excitatory amino acid antagonist in area CA1 of rat hippocampus. Br J Pharmacol. 1989 May;97(1):71–76. doi: 10.1111/j.1476-5381.1989.tb11925.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Catterall W. A. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol. 1980;20:15–43. doi: 10.1146/annurev.pa.20.040180.000311. [DOI] [PubMed] [Google Scholar]
  5. Coan E. J., Collingridge G. L. Magnesium ions block an N-methyl-D-aspartate receptor-mediated component of synaptic transmission in rat hippocampus. Neurosci Lett. 1985 Jan 7;53(1):21–26. doi: 10.1016/0304-3940(85)90091-6. [DOI] [PubMed] [Google Scholar]
  6. Collingridge G. L., Kehl S. J., McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol. 1983 Jan;334:33–46. doi: 10.1113/jphysiol.1983.sp014478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeLorenzo R. J. A molecular approach to the calcium signal in brain: relationship to synaptic modulation and seizure discharge. Adv Neurol. 1986;44:435–464. [PubMed] [Google Scholar]
  8. Fleck M. W., Henze D. A., Barrionuevo G., Palmer A. M. Aspartate and glutamate mediate excitatory synaptic transmission in area CA1 of the hippocampus. J Neurosci. 1993 Sep;13(9):3944–3955. doi: 10.1523/JNEUROSCI.13-09-03944.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffith W. H., Taylor L. Phenytoin reduces excitatory synaptic transmission and post-tetanic potentiation in the in vitro hippocampus. J Pharmacol Exp Ther. 1988 Sep;246(3):851–858. [PubMed] [Google Scholar]
  10. Halliwell R. F., Peters J. A., Lambert J. J. The mechanism of action and pharmacological specificity of the anticonvulsant NMDA antagonist MK-801: a voltage clamp study on neuronal cells in culture. Br J Pharmacol. 1989 Feb;96(2):480–494. doi: 10.1111/j.1476-5381.1989.tb11841.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huettner J. E., Bean B. P. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1307–1311. doi: 10.1073/pnas.85.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuo C. C., Bean B. P. Slow binding of phenytoin to inactivated sodium channels in rat hippocampal neurons. Mol Pharmacol. 1994 Oct;46(4):716–725. [PubMed] [Google Scholar]
  13. Lehmann J., Schneider J., McPherson S., Murphy D. E., Bernard P., Tsai C., Bennett D. A., Pastor G., Steel D. J., Boehm C. CPP, a selective N-methyl-D-aspartate (NMDA)-type receptor antagonist: characterization in vitro and in vivo. J Pharmacol Exp Ther. 1987 Mar;240(3):737–746. [PubMed] [Google Scholar]
  14. Matsuki N., Quandt F. N., Ten Eick R. E., Yeh J. Z. Characterization of the block of sodium channels by phenytoin in mouse neuroblastoma cells. J Pharmacol Exp Ther. 1984 Feb;228(2):523–530. [PubMed] [Google Scholar]
  15. McLean M. J., Macdonald R. L. Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. J Pharmacol Exp Ther. 1983 Dec;227(3):779–789. [PubMed] [Google Scholar]
  16. Psarropoulou C., Haas H. L. Action of anticonvulsants on hippocampal slices in Mg-free medium. Naunyn Schmiedebergs Arch Pharmacol. 1989 Jun;339(6):613–616. doi: 10.1007/BF00168652. [DOI] [PubMed] [Google Scholar]
  17. Rogawski M. A., Porter R. J. Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev. 1990 Sep;42(3):223–286. [PubMed] [Google Scholar]
  18. Sheridan R. D., Sutor B. Presynaptic M1 muscarinic cholinoceptors mediate inhibition of excitatory synaptic transmission in the hippocampus in vitro. Neurosci Lett. 1990 Jan 22;108(3):273–278. doi: 10.1016/0304-3940(90)90653-q. [DOI] [PubMed] [Google Scholar]
  19. Stone T. W. Subtypes of NMDA receptors. Gen Pharmacol. 1993 Jul;24(4):825–832. doi: 10.1016/0306-3623(93)90155-q. [DOI] [PubMed] [Google Scholar]
  20. Stringer J. L., Lothman E. W. Phenytoin does not block hippocampal long-term potentiation or frequency potentiation. Ann Neurol. 1988 Mar;23(3):281–286. doi: 10.1002/ana.410230311. [DOI] [PubMed] [Google Scholar]
  21. Tomaselli G. F., Marban E., Yellen G. Sodium channels from human brain RNA expressed in Xenopus oocytes. Basic electrophysiologic characteristics and their modification by diphenylhydantoin. J Clin Invest. 1989 May;83(5):1724–1732. doi: 10.1172/JCI114073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Twombly D. A., Yoshii M., Narahashi T. Mechanisms of calcium channel block by phenytoin. J Pharmacol Exp Ther. 1988 Jul;246(1):189–195. [PubMed] [Google Scholar]
  23. Wamil A. W., McLean M. J. Phenytoin blocks N-methyl-D-aspartate responses of mouse central neurons. J Pharmacol Exp Ther. 1993 Oct;267(1):218–227. [PubMed] [Google Scholar]
  24. Willow M., Gonoi T., Catterall W. A. Voltage clamp analysis of the inhibitory actions of diphenylhydantoin and carbamazepine on voltage-sensitive sodium channels in neuroblastoma cells. Mol Pharmacol. 1985 May;27(5):549–558. [PubMed] [Google Scholar]
  25. Wong E. H., Kemp J. A., Priestley T., Knight A. R., Woodruff G. N., Iversen L. L. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7104–7108. doi: 10.1073/pnas.83.18.7104. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES