Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Aug;115(7):1302–1306. doi: 10.1111/j.1476-5381.1995.tb15040.x

Enhancing and inhibitory effects of nitric oxide on superoxide anion generation in human polymorphonuclear leukocytes.

M Morikawa 1, M Inoue 1, S Tokumaru 1, H Kogo 1
PMCID: PMC1908767  PMID: 7582560

Abstract

1. The effects of sodium nitroprusside (SNP, a nitric oxide donor) and authentic nitric oxide (NO) on superoxide anion (O2-) generation were investigated in human polymorphonuclear leukocytes (PMNs). 2. Neither SNP (10 nM to 10 microM) nor NO (40 nM to 40 microM) alone induced O2- generation or change of intracellular Ca2+ concentration ([Ca2+]i) in human PMNs. 3. Pretreatment with SNP or NO at the concentrations used (SNP, 10 nM to 10 microM: NO, 40 nM to 40 microM) showed a biphasic concentration-dependent effect on O2- generation induced by f-methionyl-leucyl-phenylalanine (FMLP). Low concentrations of SNP (10 nM to 100 nM) and NO (400 nM) did not affect either basal cyclic GMP levels or cyclic GMP levels stimulated by FMLP, but enhanced FMLP-induced O2- generation and [Ca2+]i elevation. On the other hand, high concentrations of SNP (10 microM) and NO (40 microM) alone elevated cyclic GMP levels and inhibited FMLP-induced O2- generation and [Ca2+]i elevation. 4. 8-Bromo-cyclic GMP (8-Br-cyclic GMP) at concentrations ranging from 1 microM to 1 mM did not induce O2- generation on its own and had little effect on FMLP-induced O2- generation and [Ca2+]i elevation. 5. Addition of a high concentration of NO (40 microM) decreased authentic O2- formation by pyrogallol in a cell-free system, but a low concentration of NO (400 nM) had no effect on this. On the other hand, addition of SNP in the concentration-ranges used had no effect on authentic O2- formation by pyrogallol.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1302

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clancy R. M., Leszczynska-Piziak J., Abramson S. B. Nitric oxide stimulates the ADP-ribosylation of actin in human neutrophils. Biochem Biophys Res Commun. 1993 Mar 31;191(3):847–852. doi: 10.1006/bbrc.1993.1294. [DOI] [PubMed] [Google Scholar]
  2. Clancy R. M., Leszczynska-Piziak J., Abramson S. B. Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J Clin Invest. 1992 Sep;90(3):1116–1121. doi: 10.1172/JCI115929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dawson T. M., Dawson V. L., Snyder S. H. A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann Neurol. 1992 Sep;32(3):297–311. doi: 10.1002/ana.410320302. [DOI] [PubMed] [Google Scholar]
  4. Fridovich I. Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol. 1983;23:239–257. doi: 10.1146/annurev.pa.23.040183.001323. [DOI] [PubMed] [Google Scholar]
  5. Furchgott R. F. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983 Nov;53(5):557–573. doi: 10.1161/01.res.53.5.557. [DOI] [PubMed] [Google Scholar]
  6. Galione A. Ca(2+)-induced Ca2+ release and its modulation by cyclic ADP-ribose. Trends Pharmacol Sci. 1992 Aug;13(8):304–306. doi: 10.1016/0165-6147(92)90096-o. [DOI] [PubMed] [Google Scholar]
  7. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  8. Kubes P., Suzuki M., Granger D. N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4651–4655. doi: 10.1073/pnas.88.11.4651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lopez Farre A., Riesco A., Moliz M., Egido J., Casado S., Hernando L., Caramelo C. Inhibition by L-arginine of the endothelin-mediated increase in cytosolic calcium in human neutrophils. Biochem Biophys Res Commun. 1991 Aug 15;178(3):884–891. doi: 10.1016/0006-291x(91)90974-c. [DOI] [PubMed] [Google Scholar]
  10. McCall T. B., Boughton-Smith N. K., Palmer R. M., Whittle B. J., Moncada S. Synthesis of nitric oxide from L-arginine by neutrophils. Release and interaction with superoxide anion. Biochem J. 1989 Jul 1;261(1):293–296. doi: 10.1042/bj2610293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moilanen E., Vuorinen P., Kankaanranta H., Metsä-Ketelä T., Vapaatalo H. Inhibition by nitric oxide-donors of human polymorphonuclear leucocyte functions. Br J Pharmacol. 1993 Jul;109(3):852–858. doi: 10.1111/j.1476-5381.1993.tb13653.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morikawa M., Abe M., Yamauchi Y., Inoue M., Tsuboi M. Priming effect of 2,3-dibenzylbutane-1,4-diol (mammalian lignan) on superoxide production in human neutrophils. Biochem Biophys Res Commun. 1990 Apr 16;168(1):194–199. doi: 10.1016/0006-291x(90)91693-m. [DOI] [PubMed] [Google Scholar]
  13. Morikawa M., Fukuchi K., Inoue M., Tsuboi M. Effect of mammalian lignans on fMLP-induced oxidative bursts in human polymorphonuclear leucocytes. J Pharm Pharmacol. 1992 Oct;44(10):859–861. doi: 10.1111/j.2042-7158.1992.tb03220.x. [DOI] [PubMed] [Google Scholar]
  14. Radi R., Cosgrove T. P., Beckman J. S., Freeman B. A. Peroxynitrite-induced luminol chemiluminescence. Biochem J. 1993 Feb 15;290(Pt 1):51–57. doi: 10.1042/bj2900051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Radomski M. W., Palmer R. M., Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol. 1987 Sep;92(1):181–187. doi: 10.1111/j.1476-5381.1987.tb11310.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rengasamy A., Johns R. A. Inhibition of nitric oxide synthase by a superoxide generating system. J Pharmacol Exp Ther. 1993 Dec;267(3):1024–1027. [PubMed] [Google Scholar]
  17. Renz H., Gong J. H., Schmidt A., Nain M., Gemsa D. Release of tumor necrosis factor-alpha from macrophages. Enhancement and suppression are dose-dependently regulated by prostaglandin E2 and cyclic nucleotides. J Immunol. 1988 Oct 1;141(7):2388–2393. [PubMed] [Google Scholar]
  18. Riesco A., Caramelo C., Blum G., Montón M., Gallego M. J., Casado S., López Farré A. Nitric oxide-generating system as an autocrine mechanism in human polymorphonuclear leucocytes. Biochem J. 1993 Jun 15;292(Pt 3):791–796. doi: 10.1042/bj2920791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rubanyi G. M., Ho E. H., Cantor E. H., Lumma W. C., Botelho L. H. Cytoprotective function of nitric oxide: inactivation of superoxide radicals produced by human leukocytes. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1392–1397. doi: 10.1016/0006-291x(91)92093-y. [DOI] [PubMed] [Google Scholar]
  20. Saha J. K., Hirano I., Goyal R. K. Biphasic effect of SNP on opossum esophageal longitudinal muscle: involvement of cGMP and eicosanoids. Am J Physiol. 1993 Aug;265(2 Pt 1):G403–G407. doi: 10.1152/ajpgi.1993.265.2.G403. [DOI] [PubMed] [Google Scholar]
  21. Salvemini D., de Nucci G., Gryglewski R. J., Vane J. R. Human neutrophils and mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6328–6332. doi: 10.1073/pnas.86.16.6328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schröder H., Ney P., Woditsch I., Schrör K. Cyclic GMP mediates SIN-1-induced inhibition of human polymorphonuclear leukocytes. Eur J Pharmacol. 1990 Jul 3;182(2):211–218. doi: 10.1016/0014-2999(90)90279-f. [DOI] [PubMed] [Google Scholar]
  23. Wright C. D., Mülsch A., Busse R., Osswald H. Generation of nitric oxide by human neutrophils. Biochem Biophys Res Commun. 1989 Apr 28;160(2):813–819. doi: 10.1016/0006-291x(89)92506-0. [DOI] [PubMed] [Google Scholar]
  24. Wyatt T. A., Lincoln T. M., Pryzwansky K. B. Vimentin is transiently co-localized with and phosphorylated by cyclic GMP-dependent protein kinase in formyl-peptide-stimulated neutrophils. J Biol Chem. 1991 Nov 5;266(31):21274–21280. [PubMed] [Google Scholar]
  25. Yui Y., Hattori R., Kosuga K., Eizawa H., Hiki K., Ohkawa S., Ohnishi K., Terao S., Kawai C. Calmodulin-independent nitric oxide synthase from rat polymorphonuclear neutrophils. J Biol Chem. 1991 Feb 25;266(6):3369–3371. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES