Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Aug;115(7):1221–1230. doi: 10.1111/j.1476-5381.1995.tb15029.x

Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance.

A García-Pascual 1, A Labadía 1, E Jimenez 1, G Costa 1
PMCID: PMC1908774  PMID: 7582549

Abstract

1. Mechanisms underlying the relaxant response to acetylcholine (ACh) were examined in bovine oviductal arteries (o.d. 300-500 microns and i.d. 150-300 microns) in vitro. Vascular rings were treated with indomethacin (10 microM) to prevent the effects of prostaglandins. 2. ACh elicited a concentration-related relaxation in ring segments precontracted with noradrenaline (NA), which was abolished by endothelium denudation. 3. The ACh-induced relaxation was attenuated but not abolished by NG-nitro-L-arginine (L-NOARG, 1 microM-1 mM), an inhibitor of nitric oxide (NO) formation. The inhibition caused by L-NOARG (10 microM) was reversed by addition of excess of L-arginine but not D-arginine (1 mM). 4. In high K+ (40-60 mM)-contracted rings, ACh was a much less effective vasodilator and its relaxant response was completely abolished by L-NOARG (100 microM). 5. In NA (10 microM)-contracted rings, ACh induced sustained and concentration-dependent increases in cyclic GMP, which were reduced below basal values by L-NOARG (100 microM), while potent relaxation persisted. Similar increases in cyclic GMP were evoked by ACh in high K+ (50 mM)-treated arteries and under these conditions, both cyclic GMP accumulation and relaxation were L-NOARG-sensitive. 6. S-nitroso-L-cysteine (NC), a proposed endogenous precursor of endothelial NO, also induced cyclic GMP accumulation in NA-contracted oviductal arteries. 7. Methylene blue (MB, 10 microM), a proposed inhibitor of soluble guanylate cyclase, inhibited both endothelium-dependent relaxation to ACh and endothelium-independent response to exogenous NO, whereas relaxation to NC remained unaffected. 8. The L-NOARG-resistant response to ACh was not affected by either ouabain (0.5 mM), glibenclamide (3 microM), tetraethylammonium (TEA, 1 mM) or charybdotoxin (50 nM), but was selectively blocked by apamin (0.1-1 microM). However, apamin did not inhibit either relaxation to ACh in high K(+)-contracted rings or endothelium-independent relaxation to either NO or NC. 9. Apamin and MB inhibited ACh-induced relaxation in an additive fashion, suggesting the involvement of two separate modulating mechanisms. 10. These results suggest that ACh relaxes bovine oviductal arteries by the release of two distinct endothelial factors: a NO-like substance derived from L-arginine, which induces cyclic GMP accumulation in smooth muscle, and another non-prostanoid factor acting by hyperpolarization mechanisms through alterations in apamin-sensitive K+ conductance.

Full text

PDF
1221

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adeagbo A. S., Malik K. U. Contribution of K+ channels to arachidonic acid-induced endothelium-dependent vasodilation in rat isolated perfused mesenteric arteries. J Pharmacol Exp Ther. 1991 Aug;258(2):452–458. [PubMed] [Google Scholar]
  2. Adeagbo A. S., Malik K. U. Endothelium-dependent and BRL 34915-induced vasodilatation in rat isolated perfused mesenteric arteries: role of G-proteins, K+ and calcium channels. Br J Pharmacol. 1990 Jul;100(3):427–434. doi: 10.1111/j.1476-5381.1990.tb15823.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alonso M. J., Salaices M., Sánchez-Ferrer C. F., Ponte A., López-Rico M., Marín J. Nitric-oxide-related and non-related mechanisms in the acetylcholine-evoked relaxations in cat femoral arteries. J Vasc Res. 1993 Nov-Dec;30(6):339–347. doi: 10.1159/000159016. [DOI] [PubMed] [Google Scholar]
  4. Bolotina V. M., Najibi S., Palacino J. J., Pagano P. J., Cohen R. A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994 Apr 28;368(6474):850–853. doi: 10.1038/368850a0. [DOI] [PubMed] [Google Scholar]
  5. Brayden J. E. Membrane hyperpolarization is a mechanism of endothelium-dependent cerebral vasodilation. Am J Physiol. 1990 Sep;259(3 Pt 2):H668–H673. doi: 10.1152/ajpheart.1990.259.3.H668. [DOI] [PubMed] [Google Scholar]
  6. Brayden J. E., Wellman G. C. Endothelium-dependent dilation of feline cerebral arteries: role of membrane potential and cyclic nucleotides. J Cereb Blood Flow Metab. 1989 Jun;9(3):256–263. doi: 10.1038/jcbfm.1989.42. [DOI] [PubMed] [Google Scholar]
  7. Brunet P. C., Bény J. L. Substance P and bradykinin hyperpolarize pig coronary artery endothelial cells in primary culture. Blood Vessels. 1989;26(4):228–234. doi: 10.1159/000158770. [DOI] [PubMed] [Google Scholar]
  8. Bény J. L., Pacicca C. Bidirectional electrical communication between smooth muscle and endothelial cells in the pig coronary artery. Am J Physiol. 1994 Apr;266(4 Pt 2):H1465–H1472. doi: 10.1152/ajpheart.1994.266.4.H1465. [DOI] [PubMed] [Google Scholar]
  9. Chen G., Suzuki H., Weston A. H. Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br J Pharmacol. 1988 Dec;95(4):1165–1174. doi: 10.1111/j.1476-5381.1988.tb11752.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen G., Yamamoto Y., Miwa K., Suzuki H. Hyperpolarization of arterial smooth muscle induced by endothelial humoral substances. Am J Physiol. 1991 Jun;260(6 Pt 2):H1888–H1892. doi: 10.1152/ajpheart.1991.260.6.H1888. [DOI] [PubMed] [Google Scholar]
  11. Chen R. Y., Ross G., Chyu K. Y., Guth P. H. Role of L-arginine-derived nitric oxide in cholinergic dilation of gastric arterioles. Am J Physiol. 1993 Dec;265(6 Pt 2):H2110–H2116. doi: 10.1152/ajpheart.1993.265.6.H2110. [DOI] [PubMed] [Google Scholar]
  12. Costa G., Isla M., García-Pascual A., Jimenez E., Recio P., Labadia A., García-Sacristán A. Characterization of postsynaptic alpha-adrenoceptors in the arteries supplying the oviduct. Br J Pharmacol. 1992 Feb;105(2):381–387. doi: 10.1111/j.1476-5381.1992.tb14262.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cowan C. L., Palacino J. J., Najibi S., Cohen R. A. Potassium channel-mediated relaxation to acetylcholine in rabbit arteries. J Pharmacol Exp Ther. 1993 Sep;266(3):1482–1489. [PubMed] [Google Scholar]
  14. Crawley D. E., Liu S. F., Evans T. W., Barnes P. J. Inhibitory role of endothelium-derived relaxing factor in rat and human pulmonary arteries. Br J Pharmacol. 1990 Sep;101(1):166–170. doi: 10.1111/j.1476-5381.1990.tb12107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Furchgott R. F., Vanhoutte P. M. Endothelium-derived relaxing and contracting factors. FASEB J. 1989 Jul;3(9):2007–2018. [PubMed] [Google Scholar]
  16. García-Pascual A., Triguero D. Relaxation mechanisms induced by stimulation of nerves and by nitric oxide in sheep urethral muscle. J Physiol. 1994 Apr 15;476(2):333–347. doi: 10.1113/jphysiol.1994.sp020135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Garland C. J., McPherson G. A. Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery. Br J Pharmacol. 1992 Feb;105(2):429–435. doi: 10.1111/j.1476-5381.1992.tb14270.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Groschner K., Graier W. F., Kukovetz W. R. Activation of a small-conductance Ca(2+)-dependent K+ channel contributes to bradykinin-induced stimulation of nitric oxide synthesis in pig aortic endothelial cells. Biochim Biophys Acta. 1992 Oct 27;1137(2):162–170. doi: 10.1016/0167-4889(92)90198-k. [DOI] [PubMed] [Google Scholar]
  19. Hwa J. J., Ghibaudi L., Williams P., Chatterjee M. Comparison of acetylcholine-dependent relaxation in large and small arteries of rat mesenteric vascular bed. Am J Physiol. 1994 Mar;266(3 Pt 2):H952–H958. doi: 10.1152/ajpheart.1994.266.3.H952. [DOI] [PubMed] [Google Scholar]
  20. Ignarro L. J. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol. 1990;30:535–560. doi: 10.1146/annurev.pa.30.040190.002535. [DOI] [PubMed] [Google Scholar]
  21. Jovanović A., Grbović L., Tulić I. Endothelium-dependent relaxation in response to acetylcholine in the human uterine artery. Eur J Pharmacol. 1994 Apr 21;256(2):131–139. doi: 10.1016/0014-2999(94)90237-2. [DOI] [PubMed] [Google Scholar]
  22. Jovanović A., Grbović L., Tulić I. Predominant role for nitric oxide in the relaxation induced by acetylcholine in human uterine artery. Hum Reprod. 1994 Mar;9(3):387–393. doi: 10.1093/oxfordjournals.humrep.a138514. [DOI] [PubMed] [Google Scholar]
  23. Khan S. A., Mathews W. R., Meisheri K. D. Role of calcium-activated K+ channels in vasodilation induced by nitroglycerine, acetylcholine and nitric oxide. J Pharmacol Exp Ther. 1993 Dec;267(3):1327–1335. [PubMed] [Google Scholar]
  24. Kolb H. A. Potassium channels in excitable and non-excitable cells. Rev Physiol Biochem Pharmacol. 1990;115:51–91. [PubMed] [Google Scholar]
  25. Kowaluk E. A., Fung H. L. Spontaneous liberation of nitric oxide cannot account for in vitro vascular relaxation by S-nitrosothiols. J Pharmacol Exp Ther. 1990 Dec;255(3):1256–1264. [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Lansman J. B., Hallam T. J., Rink T. J. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? 1987 Feb 26-Mar 4Nature. 325(6107):811–813. doi: 10.1038/325811a0. [DOI] [PubMed] [Google Scholar]
  28. Leese H. J. The formation and function of oviduct fluid. J Reprod Fertil. 1988 Mar;82(2):843–856. doi: 10.1530/jrf.0.0820843. [DOI] [PubMed] [Google Scholar]
  29. Martin W., Villani G. M., Jothianandan D., Furchgott R. F. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther. 1985 Mar;232(3):708–716. [PubMed] [Google Scholar]
  30. Mayer B., Brunner F., Schmidt K. Inhibition of nitric oxide synthesis by methylene blue. Biochem Pharmacol. 1993 Jan 26;45(2):367–374. doi: 10.1016/0006-2952(93)90072-5. [DOI] [PubMed] [Google Scholar]
  31. McPherson G. A., Angus J. A. Evidence that acetylcholine-mediated hyperpolarization of the rat small mesenteric artery does not involve the K+ channel opened by cromakalim. Br J Pharmacol. 1991 May;103(1):1184–1190. doi: 10.1111/j.1476-5381.1991.tb12321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Milner P., Kirkpatrick K. A., Ralevic V., Toothill V., Pearson J., Burnstock G. Endothelial cells cultured from human umbilical vein release ATP, substance P and acetylcholine in response to increased flow. Proc Biol Sci. 1990 Sep 22;241(1302):245–248. doi: 10.1098/rspb.1990.0092. [DOI] [PubMed] [Google Scholar]
  33. Myers P. R., Minor R. L., Jr, Guerra R., Jr, Bates J. N., Harrison D. G. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature. 1990 May 10;345(6271):161–163. doi: 10.1038/345161a0. [DOI] [PubMed] [Google Scholar]
  34. Mügge A., Lopez J. A., Piegors D. J., Breese K. R., Heistad D. D. Acetylcholine-induced vasodilatation in rabbit hindlimb in vivo is not inhibited by analogues of L-arginine. Am J Physiol. 1991 Jan;260(1 Pt 2):H242–H247. doi: 10.1152/ajpheart.1991.260.1.H242. [DOI] [PubMed] [Google Scholar]
  35. Rees D. D., Palmer R. M., Hodson H. F., Moncada S. A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol. 1989 Feb;96(2):418–424. doi: 10.1111/j.1476-5381.1989.tb11833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Robertson B. E., Schubert R., Hescheler J., Nelson M. T. cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am J Physiol. 1993 Jul;265(1 Pt 1):C299–C303. doi: 10.1152/ajpcell.1993.265.1.C299. [DOI] [PubMed] [Google Scholar]
  37. Standen N. B., Quayle J. M., Davies N. W., Brayden J. E., Huang Y., Nelson M. T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science. 1989 Jul 14;245(4914):177–180. doi: 10.1126/science.2501869. [DOI] [PubMed] [Google Scholar]
  38. Suzuki H., Chen G., Yamamoto Y., Miwa K. Nitroarginine-sensitive and -insensitive components of the endothelium-dependent relaxation in the guinea-pig carotid artery. Jpn J Physiol. 1992;42(2):335–347. doi: 10.2170/jjphysiol.42.335. [DOI] [PubMed] [Google Scholar]
  39. Tare M., Parkington H. C., Coleman H. A., Neild T. O., Dusting G. J. Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Nature. 1990 Jul 5;346(6279):69–71. doi: 10.1038/346069a0. [DOI] [PubMed] [Google Scholar]
  40. Weiner C. P., Lizasoain I., Baylis S. A., Knowles R. G., Charles I. G., Moncada S. Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5212–5216. doi: 10.1073/pnas.91.11.5212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wolin M. S., Cherry P. D., Rodenburg J. M., Messina E. J., Kaley G. Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion. J Pharmacol Exp Ther. 1990 Sep;254(3):872–876. [PubMed] [Google Scholar]
  42. Yallampalli C., Byam-Smith M., Nelson S. O., Garfield R. E. Steroid hormones modulate the production of nitric oxide and cGMP in the rat uterus. Endocrinology. 1994 Apr;134(4):1971–1974. doi: 10.1210/endo.134.4.8137765. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES