Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Aug;115(7):1169–1174. doi: 10.1111/j.1476-5381.1995.tb15020.x

NMDA-induced glutamate and aspartate release from rat cortical pyramidal neurones: evidence for modulation by a 5-HT1A antagonist.

S N Dijk 1, P T Francis 1, G C Stratmann 1, D M Bowen 1
PMCID: PMC1908786  PMID: 7582540

Abstract

1. We have investigated an aspect of the regulation of cortical pyramidal neurone activity. Microdialysis was used to assess whether topical application of drugs (in 10 microliter) to fill a burr hole over the frontal cortex, where part of the corticostriatal pathway originates, would change concentrations of the excitatory amino acids glutamate and aspartate in the striatum of the anaesthetized rat. 2. Topical application of N-methyl-D-aspartate (NMDA, 2 and 20 mM) dose-dependently increased glutamate and aspartate concentrations in the striatum. Coapplication of tetrodotoxin (10 microM) blocked the NMDA-evoked rise in these amino acids. A calcium-free medium, perfused through the probe also blocked the rise, indicating that it was due to an exocytotic mechanism in the striatum. 3. It was hypothesized that the rise observed was due to an increase in the activity of the corticostriatal pathway. As 5-hydroxytryptamine1A (5-HT1A) receptors are enriched on cell bodies of corticostriatal neurones, a selective 5-HT1A-antagonist (WAY 100135) was coapplied with the lower dose of NMDA. Compared to NMDA alone, coapplication of 50 microM WAY 100135 significantly increased glutamate release. This effect was sensitive to tetrodotoxin and calcium-dependent. Application of 50 microM WAY 100135 alone significantly enhanced glutamate release above baseline; this was also tested at 100 microM (not significant). 4. Compared to NMDA alone, coapplication of WAY 100135 (20 microM) significantly enhanced aspartate release; the mean value was also increased (not significantly) with 50 microM. This rise was calcium-dependent, but not tetrodotoxin-sensitive. WAY 100135 (100 microM) reduced NMDA-induced aspartate release.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1169

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitken P. G., Jing J., Young J., Somjen G. G. Ion channel involvement in hypoxia-induced spreading depression in hippocampal slices. Brain Res. 1991 Feb 8;541(1):7–11. doi: 10.1016/0006-8993(91)91067-b. [DOI] [PubMed] [Google Scholar]
  2. Albert P. R., Zhou Q. Y., Van Tol H. H., Bunzow J. R., Civelli O. Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J Biol Chem. 1990 Apr 5;265(10):5825–5832. [PubMed] [Google Scholar]
  3. Andrade R., Nicoll R. A. Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol. 1987 Dec;394:99–124. doi: 10.1113/jphysiol.1987.sp016862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Araneda R., Andrade R. 5-Hydroxytryptamine2 and 5-hydroxytryptamine 1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience. 1991;40(2):399–412. doi: 10.1016/0306-4522(91)90128-b. [DOI] [PubMed] [Google Scholar]
  5. Barone P., Jordan D., Atger F., Kopp N., Fillion G. Quantitative autoradiography of 5-HT1D and 5-HT1E binding sites labelled by [3H]5-HT, in frontal cortex and the hippocampal region of the human brain. Brain Res. 1994 Feb 28;638(1-2):85–94. doi: 10.1016/0006-8993(94)90636-x. [DOI] [PubMed] [Google Scholar]
  6. Bowen D. M., Francis P. T., Chessell I. P., Webster M. T. Neurotransmission--the link integrating Alzheimer research? Trends Neurosci. 1994 Apr;17(4):149–150. doi: 10.1016/0166-2236(94)90091-4. [DOI] [PubMed] [Google Scholar]
  7. Bowen D. M., Francis P. T., Pangalos M. N., Stephens P. H., Procter A. W. Treatment strategies for Alzheimer's disease. Lancet. 1992 Jan 11;339(8785):132–133. doi: 10.1016/0140-6736(92)91050-i. [DOI] [PubMed] [Google Scholar]
  8. Ceci A., Baschirotto A., Borsini F. Effect of fluoxetine on the spontaneous electrical activity of fronto-cortical neurons. Eur J Pharmacol. 1993 Dec 21;250(3):461–464. doi: 10.1016/0014-2999(93)90034-f. [DOI] [PubMed] [Google Scholar]
  9. Colino A., Halliwell J. V. Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature. 1987 Jul 2;328(6125):73–77. doi: 10.1038/328073a0. [DOI] [PubMed] [Google Scholar]
  10. Fagg G. E., Foster A. C. Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience. 1983 Aug;9(4):701–719. doi: 10.1016/0306-4522(83)90263-4. [DOI] [PubMed] [Google Scholar]
  11. Fletcher A., Bill D. J., Bill S. J., Cliffe I. A., Dover G. M., Forster E. A., Haskins J. T., Jones D., Mansell H. L., Reilly Y. WAY100135: a novel, selective antagonist at presynaptic and postsynaptic 5-HT1A receptors. Eur J Pharmacol. 1993 Jun 24;237(2-3):283–291. doi: 10.1016/0014-2999(93)90280-u. [DOI] [PubMed] [Google Scholar]
  12. Fonnum F. Glutamate: a neurotransmitter in mammalian brain. J Neurochem. 1984 Jan;42(1):1–11. doi: 10.1111/j.1471-4159.1984.tb09689.x. [DOI] [PubMed] [Google Scholar]
  13. Francis P. T., Pangalos M. N., Pearson R. C., Middlemiss D. N., Stratmann G. C., Bowen D. M. 5-Hydroxytryptamine1A but not 5-hydroxytryptamine2 receptors are enriched on neocortical pyramidal neurones destroyed by intrastriatal volkensin. J Pharmacol Exp Ther. 1992 Jun;261(3):1273–1281. [PubMed] [Google Scholar]
  14. Francis P. T., Pangalos M. N., Stephens P. H., Bartlett J. R., Bridges P. K., Malizia A. L., Neary D., Procter A. W., Thomas D. J., Bowen D. M. Antemortem measurements of neurotransmission: possible implications for pharmacotherapy of Alzheimer's disease and depression. J Neurol Neurosurg Psychiatry. 1993 Jan;56(1):80–84. doi: 10.1136/jnnp.56.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Francis P. T., Sims N. R., Procter A. W., Bowen D. M. Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer's disease: investigative and therapeutic perspectives. J Neurochem. 1993 May;60(5):1589–1604. doi: 10.1111/j.1471-4159.1993.tb13381.x. [DOI] [PubMed] [Google Scholar]
  16. Garthwaite J. Cellular uptake disguises action of L-glutamate on N-methyl-D-aspartate receptors. With an appendix: diffusion of transported amino acids into brain slices. Br J Pharmacol. 1985 May;85(1):297–307. doi: 10.1111/j.1476-5381.1985.tb08860.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Greenamyre J. T., Young A. B. Synaptic localization of striatal NMDA, quisqualate and kainate receptors. Neurosci Lett. 1989 Jun 19;101(2):133–137. doi: 10.1016/0304-3940(89)90519-3. [DOI] [PubMed] [Google Scholar]
  18. Hutson P. H., Sarna G. S., Kantamaneni B. D., Curzon G. Monitoring the effect of a tryptophan load on brain indole metabolism in freely moving rats by simultaneous cerebrospinal fluid sampling and brain dialysis. J Neurochem. 1985 Apr;44(4):1266–1273. doi: 10.1111/j.1471-4159.1985.tb08753.x. [DOI] [PubMed] [Google Scholar]
  19. KRNJEVIC K., PHILLIS J. W. Actions of certain amines on cerebral cortical neurones. Br J Pharmacol Chemother. 1963 Jun;20:471–490. doi: 10.1111/j.1476-5381.1963.tb01484.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee M., Strahlendorf J. C., Strahlendorf H. K. Modulatory action of serotonin on glutamate-induced excitation of cerebellar Purkinje cells. Brain Res. 1985 Dec 30;361(1-2):107–113. doi: 10.1016/0006-8993(85)91280-6. [DOI] [PubMed] [Google Scholar]
  21. Lowe S. L., Bowen D. M., Francis P. T., Neary D. Ante mortem cerebral amino acid concentrations indicate selective degeneration of glutamate-enriched neurons in Alzheimer's disease. Neuroscience. 1990;38(3):571–577. doi: 10.1016/0306-4522(90)90051-5. [DOI] [PubMed] [Google Scholar]
  22. McCall R. B., Aghajanian G. K. Serotonergic facilitation of facial motoneuron excitation. Brain Res. 1979 Jun 15;169(1):11–27. doi: 10.1016/0006-8993(79)90370-6. [DOI] [PubMed] [Google Scholar]
  23. McCormick D. A., Williamson A. Convergence and divergence of neurotransmitter action in human cerebral cortex. Proc Natl Acad Sci U S A. 1989 Oct;86(20):8098–8102. doi: 10.1073/pnas.86.20.8098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nicholls D. G. Release of glutamate, aspartate, and gamma-aminobutyric acid from isolated nerve terminals. J Neurochem. 1989 Feb;52(2):331–341. doi: 10.1111/j.1471-4159.1989.tb09126.x. [DOI] [PubMed] [Google Scholar]
  25. O'Neill C., Cowburn R. F., Wiehager B., Alafuzoff I., Winblad B., Fowler C. J. Preservation of 5-hydroxytryptamine1A receptor-G protein interactions in the cerebral cortex of patients with Alzheimer's disease. Neurosci Lett. 1991 Nov 25;133(1):15–19. doi: 10.1016/0304-3940(91)90046-v. [DOI] [PubMed] [Google Scholar]
  26. Orrego F. Criteria for the identification of central neurotransmitters, and their application to studies with some nerve tissue preparations in vitro. Neuroscience. 1979;4(8):1037–1057. doi: 10.1016/0306-4522(79)90186-6. [DOI] [PubMed] [Google Scholar]
  27. Palmer A. M., Francis P. T., Benton J. S., Sims N. R., Mann D. M., Neary D., Snowden J. S., Bowen D. M. Presynaptic serotonergic dysfunction in patients with Alzheimer's disease. J Neurochem. 1987 Jan;48(1):8–15. doi: 10.1111/j.1471-4159.1987.tb13120.x. [DOI] [PubMed] [Google Scholar]
  28. Palmer A. M., Hutson P. H., Lowe S. L., Bowen D. M. Extracellular concentrations of aspartate and glutamate in rat neostriatum following chemical stimulation of frontal cortex. Exp Brain Res. 1989;75(3):659–663. doi: 10.1007/BF00249918. [DOI] [PubMed] [Google Scholar]
  29. Palmer A. M., Stratmann G. C., Procter A. W., Bowen D. M. Possible neurotransmitter basis of behavioral changes in Alzheimer's disease. Ann Neurol. 1988 Jun;23(6):616–620. doi: 10.1002/ana.410230616. [DOI] [PubMed] [Google Scholar]
  30. Palmer A. M., Wilcock G. K., Esiri M. M., Francis P. T., Bowen D. M. Monoaminergic innervation of the frontal and temporal lobes in Alzheimer's disease. Brain Res. 1987 Jan 20;401(2):231–238. doi: 10.1016/0006-8993(87)91408-9. [DOI] [PubMed] [Google Scholar]
  31. Pangalos M. N., Francis P. T., Pearson R. C., Middlemiss D. N., Bowen D. M. Destruction of a sub-population of cortical neurones by suicide transport of volkensin, a lectin from Adenia volkensii. J Neurosci Methods. 1991 Nov;40(1):17–29. doi: 10.1016/0165-0270(91)90113-e. [DOI] [PubMed] [Google Scholar]
  32. Reynolds J. N., Baskys A., Carlen P. L. The effects of serotonin on N-methyl-D-aspartate and synaptically evoked depolarizations in rat neocortical neurons. Brain Res. 1988 Jul 26;456(2):286–292. doi: 10.1016/0006-8993(88)90230-2. [DOI] [PubMed] [Google Scholar]
  33. Routledge C., Gurling J., Wright I. K., Dourish C. T. Neurochemical profile of the selective and silent 5-HT1A receptor antagonist WAY100135: an in vivo microdialysis study. Eur J Pharmacol. 1993 Aug 3;239(1-3):195–202. doi: 10.1016/0014-2999(93)90994-s. [DOI] [PubMed] [Google Scholar]
  34. Skerritt J. H., Johnston G. A. Uptake and release of N-methyl-D-aspartate by rat brain slices. J Neurochem. 1981 Mar;36(3):881–885. doi: 10.1111/j.1471-4159.1981.tb01676.x. [DOI] [PubMed] [Google Scholar]
  35. Sparks D. L., Hunsaker J. C., 3rd, Slevin J. T., DeKosky S. T., Kryscio R. J., Markesbery W. R. Monoaminergic and cholinergic synaptic markers in the nucleus basalis of Meynert (nbM): normal age-related changes and the effect of heart disease and Alzheimer's disease. Ann Neurol. 1992 Jun;31(6):611–620. doi: 10.1002/ana.410310608. [DOI] [PubMed] [Google Scholar]
  36. Tobiasz C., Nicholson C. Tetrodotoxin resistant propagation and extracellular sodium changes during spreading depression in rat cerebellum. Brain Res. 1982 Jun 10;241(2):329–333. doi: 10.1016/0006-8993(82)91071-x. [DOI] [PubMed] [Google Scholar]
  37. Winfield D. A., Gatter K. C., Powell T. P. An electron microscopic study of the types and proportions of neurons in the cortex of the motor and visual areas of the cat and rat. Brain. 1980 Jun;103(2):245–258. doi: 10.1093/brain/103.2.245. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES