Abstract
1. The effect of arginine vasopressin (AVP) on human uterine artery rings, both intact and denuded of endothelium, was investigated. 2. Initially, AVP (63 pM-32 nM) induced concentration-dependent contraction of human uterine artery (pD2 = 8.92 +/- 0.01). Removal of the endothelium did not affect the concentration-response curve for AVP (pD2 = 8.83 +/- 0.03). 3. In contrast, human uterine arteries, both intact and denuded of endothelium, did not respond to the addition of 1-desamino-8-D-arginine vasopressin (dDAVP, 1 nM-1 microM). 4. In both types of preparations, [d(CH2)5Tyr(Me)AVP (1-10 nM) and [d(CH2)5,D-Ile2,Ile4]AVP (300 nM-3 microM) produced parallel rightward shifts of the curves for AVP. The Schild plots constrained to a slope of unity gave the following -log KB values: [d(CH2)5Tyr(Me)]AVP vs. [d(CH2)5,D-Ile2,Ile4]AVP 9.66 vs. 6.69 and 9.61 vs. 6.80 for human uterine artery, intact and denuded of endothelium, respectively. 5. The pKA values for AVP itself also did not differ between preparations: 6.56 and 6.43 for human uterine artery with and without endothelium, respectively. In both types of preparations, the receptor reserve (KA/EC50) was considerably greater than unity (intact vs. denuded: 228 vs. 244). 6. It is concluded that, in human uterine artery, AVP induces contractions that are not modulated by the endothelium. It is likely that AVP acts as a full agonist on human uterine artery, regardless of the endothelial condition. On the basis of differential antagonists affinity and affinity of AVP itself, it is probable that vasopressin receptors involved in AVP-induced contraction in human uterine arteries belong to the V1a or V1a-like subtype.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adeagbo A. S., Triggle C. R. Interactions of nitric oxide synthase inhibitors and dexamethasone with alpha-adrenoceptor-mediated responses in rat aorta. Br J Pharmacol. 1993 Jun;109(2):495–501. doi: 10.1111/j.1476-5381.1993.tb13597.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alosachie I., Godfraind T. Role of cyclic GMP in the modulation by endothelium of the adrenolytic action of prazosin in the rat isolated aorta. Br J Pharmacol. 1986 Nov;89(3):525–532. doi: 10.1111/j.1476-5381.1986.tb11152.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alosachie I., Godfraind T. The modulatory role of vascular endothelium in the interaction of agonists and antagonists with alpha-adrenoceptors in the rat aorta. Br J Pharmacol. 1988 Oct;95(2):619–629. doi: 10.1111/j.1476-5381.1988.tb11684.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altura B. M. Neurohypophyseal hormones and analogues: rat pressor potency versus contractile potency on rat arterioles and arteries. Proc Soc Exp Biol Med. 1974 Sep;146(4):1054–1060. doi: 10.3181/00379727-146-38245. [DOI] [PubMed] [Google Scholar]
- Antoni F. A., Holmes M. C., Makara G. B., Kárteszi M., László F. A. Evidence that the effects of arginine-8-vasopressin (AVP) on pituitary corticotropin (ACTH) release are mediated by a novel type of receptor. Peptides. 1984 May-Jun;5(3):519–522. doi: 10.1016/0196-9781(84)90080-9. [DOI] [PubMed] [Google Scholar]
- Baertschi A. J., Friedli M. A novel type of vasopressin receptor on anterior pituitary corticotrophs? Endocrinology. 1985 Feb;116(2):499–502. doi: 10.1210/endo-116-2-499. [DOI] [PubMed] [Google Scholar]
- Chiba S., Tsukada M. Potent antagonistic action of OPC-31260, a vasopressin V2 receptor antagonist, on [Arg8]vasopressin-induced vasoconstriction in isolated simian femoral arteries. Eur J Pharmacol. 1992 Oct 20;221(2-3):393–395. doi: 10.1016/0014-2999(92)90730-r. [DOI] [PubMed] [Google Scholar]
- Conde M. V., Marco E. J., Fraile M. L., Benito J. M., Moreno M. J., Sanz M. L., López de Pablo A. L. Different influence of endothelium in the mechanical responses of human and cat isolated cerebral arteries to several agents. J Pharm Pharmacol. 1991 Apr;43(4):255–261. doi: 10.1111/j.2042-7158.1991.tb06679.x. [DOI] [PubMed] [Google Scholar]
- Ekesbo R., Alm P., Ekström P., Lundberg L. M., Akerlund M. Innervation of the human uterine artery and contractile responses to neuropeptides. Gynecol Obstet Invest. 1991;31(1):30–36. doi: 10.1159/000293096. [DOI] [PubMed] [Google Scholar]
- Evora P. R., Pearson P. J., Schaff H. V. Arginine vasopressin induces endothelium-dependent vasodilatation of the pulmonary artery. V1-receptor-mediated production of nitric oxide. Chest. 1993 Apr;103(4):1241–1245. doi: 10.1378/chest.103.4.1241. [DOI] [PubMed] [Google Scholar]
- Gopalakrishnan V., Xu Y. J., Sulakhe P. V., Triggle C. R., McNeill J. R. Vasopressin (V1) receptor characteristics in rat aortic smooth muscle cells. Am J Physiol. 1991 Dec;261(6 Pt 2):H1927–H1936. doi: 10.1152/ajpheart.1991.261.6.H1927. [DOI] [PubMed] [Google Scholar]
- Hauksson A., Akerlund M., Melin P. Uterine blood flow and myometrial activity at menstruation, and the action of vasopressin and a synthetic antagonist. Br J Obstet Gynaecol. 1988 Sep;95(9):898–904. doi: 10.1111/j.1471-0528.1988.tb06577.x. [DOI] [PubMed] [Google Scholar]
- Howl J., Ismail T., Strain A. J., Kirk C. J., Anderson D., Wheatley M. Characterization of the human liver vasopressin receptor. Profound differences between human and rat vasopressin-receptor-mediated responses suggest only a minor role for vasopressin in regulating human hepatic function. Biochem J. 1991 May 15;276(Pt 1):189–195. doi: 10.1042/bj2760189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jard S., Gaillard R. C., Guillon G., Marie J., Schoenenberg P., Muller A. F., Manning M., Sawyer W. H. Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol Pharmacol. 1986 Aug;30(2):171–177. [PubMed] [Google Scholar]
- Jovanović A., Grbović L., Tulić I. Endothelium-dependent relaxation in response to acetylcholine in the human uterine artery. Eur J Pharmacol. 1994 Apr 21;256(2):131–139. doi: 10.1016/0014-2999(94)90237-2. [DOI] [PubMed] [Google Scholar]
- Jovanović A., Grbović L., Tulić I. Predominant role for nitric oxide in the relaxation induced by acetylcholine in human uterine artery. Hum Reprod. 1994 Mar;9(3):387–393. doi: 10.1093/oxfordjournals.humrep.a138514. [DOI] [PubMed] [Google Scholar]
- Katusic Z. S., Shepherd J. T., Vanhoutte P. M. Vasopressin causes endothelium-dependent relaxations of the canine basilar artery. Circ Res. 1984 Nov;55(5):575–579. doi: 10.1161/01.res.55.5.575. [DOI] [PubMed] [Google Scholar]
- Katusić Z., Krstić M. K. Vasopressin causes endothelium-independent contraction of the rat arteries. Pharmacology. 1987;35(5):264–271. doi: 10.1159/000138319. [DOI] [PubMed] [Google Scholar]
- Kostrzewska A., Laudánski T., Batra S. Effect of ovarian steroids and diethylstilbestrol on the contractile responses of the human myometrium and intramyometrial arteries. Eur J Pharmacol. 1993 Mar 16;233(1):127–134. doi: 10.1016/0014-2999(93)90358-o. [DOI] [PubMed] [Google Scholar]
- Kruszynski M., Lammek B., Manning M., Seto J., Haldar J., Sawyer W. H. [1-beta-Mercapto-beta,beta-cyclopentamethylenepropionic acid),2-(O-methyl)tyrosine ]argine-vasopressin and [1-beta-mercapto-beta,beta-cyclopentamethylenepropionic acid)]argine-vasopressine, two highly potent antagonists of the vasopressor response to arginine-vasopressin. J Med Chem. 1980 Apr;23(4):364–368. doi: 10.1021/jm00178a003. [DOI] [PubMed] [Google Scholar]
- Manning M., Nawrocka E., Misicka A., Olma A., Klis W. A., Seto J., Sawyer W. H. Potent and selective antagonists of the antidiuretic responses to arginine-vasopressin based on modifications of [1-(beta-mercapto-beta,beta-pentamethylenepropionic acid),2-D-isoleucine,4- valine]arginine-vasopressin at position 4. J Med Chem. 1984 Apr;27(4):423–429. doi: 10.1021/jm00370a002. [DOI] [PubMed] [Google Scholar]
- Manning M., Olma A., Klis W. A., Seto J., Sawyer W. H. Potent antagonists of the antidiuretic responses to arginine-vasopressin based on modifications of [1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid),2-D- phenylalanine,4-valine]arginine-vasopressin at position 4. J Med Chem. 1983 Nov;26(11):1607–1613. doi: 10.1021/jm00365a011. [DOI] [PubMed] [Google Scholar]
- Manning M., Stoev S., Bankowski K., Misicka A., Lammek B., Wo N. C., Sawyer W. H. Synthesis and some pharmacological properties of potent and selective antagonists of the vasopressor (V1-receptor) response to arginine-vasopressin. J Med Chem. 1992 Jan 24;35(2):382–388. doi: 10.1021/jm00080a027. [DOI] [PubMed] [Google Scholar]
- Nelson S. H., Suresh M. S. Lack of reactivity of uterine arteries from patients with obstetric hemorrhage. Am J Obstet Gynecol. 1992 May;166(5):1436–1443. doi: 10.1016/0002-9378(92)91616-i. [DOI] [PubMed] [Google Scholar]
- Pipili-Synetos E., Sideri E., Maragoudakis M. E. Role of endothelium on alpha-adrenoceptor responsiveness and prostacyclin release from the mesenteric arterial bed of the rat. J Auton Pharmacol. 1991 Jun;11(3):129–137. doi: 10.1111/j.1474-8673.1991.tb00312.x. [DOI] [PubMed] [Google Scholar]
- Pliska V. Pharmacological versus binding analysis of receptor systems: how do they interplay? Myometrial cell receptors for oxytocin as a paradigm. Experientia. 1991 Mar 15;47(3):216–221. doi: 10.1007/BF01958139. [DOI] [PubMed] [Google Scholar]
- Randall M. D., Kay A. P., Hiley C. R. Endothelium-dependent modulation of the pressor activity of arginine vasopressin in the isolated superior mesenteric arterial bed of the rat. Br J Pharmacol. 1988 Oct;95(2):646–652. doi: 10.1111/j.1476-5381.1988.tb11687.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruffolo R. R., Jr Review important concepts of receptor theory. J Auton Pharmacol. 1982 Dec;2(4):277–295. doi: 10.1111/j.1474-8673.1982.tb00520.x. [DOI] [PubMed] [Google Scholar]
- Sarrel P. M., Lindsay D. C., Poole-Wilson P. A., Collins P. Hypothesis: inhibition of endothelium-derived relaxing factor by haemoglobin in the pathogenesis of pre-eclampsia. Lancet. 1990 Oct 27;336(8722):1030–1032. doi: 10.1016/0140-6736(90)92490-9. [DOI] [PubMed] [Google Scholar]
- Sawyer W. H., Bankowski K., Misicka A., Nawrocka E., Kruszynski M., Stoev S., Klis W. A., Przybylski J. P., Manning M. Potent V2 vasopressin antagonists with structural changes at their C-terminals. Peptides. 1988 Jan-Feb;9(1):157–163. doi: 10.1016/0196-9781(88)90022-8. [DOI] [PubMed] [Google Scholar]
- Sawyer W. H., Grzonka Z., Manning M. Neurohypophysial peptides. Design of tissue-specific agonists and antagonists. Mol Cell Endocrinol. 1981 May;22(2):117–134. doi: 10.1016/0303-7207(81)90086-1. [DOI] [PubMed] [Google Scholar]
- Seino M., Abe K., Tsunoda K., Yoshinaga K. Interaction of vasopressin and prostaglandins through calcium ion in the renal circulation. Hypertension. 1985 Jan-Feb;7(1):53–58. doi: 10.1161/01.hyp.7.1.53. [DOI] [PubMed] [Google Scholar]
- Svane D., Lundin S., Andersson K. E., Forman A. Regional differences in vascular responses in the human uterus. Br J Obstet Gynaecol. 1990 Nov;97(11):1033–1037. doi: 10.1111/j.1471-0528.1990.tb02478.x. [DOI] [PubMed] [Google Scholar]
- Svane D., Skajaa K., Andersson K. E., Forman A. Vascular responses in term pregnant and non-pregnant human uterus. Placenta. 1991 Jan-Feb;12(1):47–54. doi: 10.1016/0143-4004(91)90509-e. [DOI] [PubMed] [Google Scholar]
- Szot P., Myers K. M., Swank M., Dorsa D. M. Characterization of a 3H-arginine8-vasopressin binding site in the cingulate gyrus of the rat pup. Peptides. 1989 Nov-Dec;10(6):1231–1237. doi: 10.1016/0196-9781(89)90017-x. [DOI] [PubMed] [Google Scholar]
- Tallarida R. J., Cowan A., Adler M. W. pA2 and receptor differentiation: a statistical analysis of competitive antagonism. Life Sci. 1979 Aug 20;25(8):637–654. doi: 10.1016/0024-3205(79)90505-8. [DOI] [PubMed] [Google Scholar]
- Taylor A. H., Ang V. T., Jenkins J. S., Silverlight J. J., Coombes R. C., Luqmani Y. A. Interaction of vasopressin and oxytocin with human breast carcinoma cells. Cancer Res. 1990 Dec 15;50(24):7882–7886. [PubMed] [Google Scholar]
- Thibonnier M., Bayer A. L., Leng Z. Cytoplasmic and nuclear signaling pathways of V1-vascular vasopressin receptors. Regul Pept. 1993 Apr 29;45(1-2):79–84. doi: 10.1016/0167-0115(93)90186-c. [DOI] [PubMed] [Google Scholar]
- Vanner S., Jiang M. M., Brooks V. L., Surprenant A. Characterization of vasopressin actions in isolated submucosal arterioles of the intestinal microcirculation. Circ Res. 1990 Oct;67(4):1017–1026. doi: 10.1161/01.res.67.4.1017. [DOI] [PubMed] [Google Scholar]
- Vokaer A. Prédiction biologique de la pré-éclampsie: les substances vasoactives. J Gynecol Obstet Biol Reprod (Paris) 1992;21(3):305–309. [PubMed] [Google Scholar]
- Woolfson R. G., Williams D. J. Free haemoglobin and pre-eclampsia. Lancet. 1990 Dec 15;336(8729):1504–1504. doi: 10.1016/0140-6736(90)93206-5. [DOI] [PubMed] [Google Scholar]
- Yanagisawa T., Hashimoto H., Taira N. Interaction of potassium channel openers and blockers in canine atrial muscle. Br J Pharmacol. 1989 Jul;97(3):753–762. doi: 10.1111/j.1476-5381.1989.tb12013.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
