Abstract
1. The clinical use of the antitumour agent, doxorubicin, is largely limited by the development of a cumulative dose-related cardiotoxicity. This toxicity is generally believed to be caused by the formation of oxygen free radicals. In earlier studies it was established that flavonoids, naturally occurring antioxidants, can provide some degree of protection. In this study we investigated whether 7-monohydroxyethylrutoside (monoHER), a powerful antioxidative flavonoid with extremely low toxicity, can provide protection to an extent comparable to the clinically successful Cardioxane (ICRF-187). 2. Balb/c mice of 20-25 g were equipped i.p. with a telemeter to measure ECG. They were given 6 i.v. doses of doxorubicin (4 mg kg-1) at weekly intervals. ICRF-187 (50 mg kg-1) or monoHER (500 mg kg-1) were administered i.p. 1 h before doxorubicin administration. In the 2 monoHER groups the treatment continued with either 1 or 4 additional injections per week. A saline and monoHER treated group served as controls. After these 6 weeks, they were observed for another 2 weeks. 3. At the end of this study (week 8) the ST interval had increased by 16.7 +/- 2.7 ms (mean +/- s.e. mean) in doxorubicin-treated mice. At that time, the ST interval had increased by only 1.8 +/- 0.9 ms in ICRF-187 co-mediated mice and in monoHER co-medicated mice by only 1.7 +/- 0.8 and 5.1 +/- 1.7 ms (5- and 2-day schedule, respectively, all P < 0.001 relative to doxorubicin and not significantly different from control). The ECG of the control animals did not change during the entire study.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bast A., Haenen G. R., Doelman C. J. Oxidants and antioxidants: state of the art. Am J Med. 1991 Sep 30;91(3C):2S–13S. doi: 10.1016/0002-9343(91)90278-6. [DOI] [PubMed] [Google Scholar]
- Bull J. M., Strebel F. R., Sunderland B. A., Bulger R. E., Edwards M., Siddik Z. H., Newman R. A. o-(beta-Hydroxyethyl)-rutoside-mediated protection of renal injury associated with cis-diamminedichloroplatinum(II)/hyperthermia treatment. Cancer Res. 1988 Apr 15;48(8):2239–2244. [PubMed] [Google Scholar]
- Canada A. T., Giannella E., Nguyen T. D., Mason R. P. The production of reactive oxygen species by dietary flavonols. Free Radic Biol Med. 1990;9(5):441–449. doi: 10.1016/0891-5849(90)90022-b. [DOI] [PubMed] [Google Scholar]
- Green M. D., Alderton P., Gross J., Muggia F. M., Speyer J. L. Evidence of the selective alteration of anthracycline activity due to modulation by ICRF-187 (ADR-529). Pharmacol Ther. 1990;48(1):61–69. doi: 10.1016/0163-7258(90)90018-w. [DOI] [PubMed] [Google Scholar]
- Hackett A. M., Griffiths L. A. The disposition and metabolism of 3',4',7-tri-O-(beta-hydroxyethyl)rutoside and 7-mono-O-(beta-hydroxyethyl)rutoside in the mouse. Xenobiotica. 1977 Oct;7(10):641–651. doi: 10.3109/00498257709038686. [DOI] [PubMed] [Google Scholar]
- Havsteen B. Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol. 1983 Apr 1;32(7):1141–1148. doi: 10.1016/0006-2952(83)90262-9. [DOI] [PubMed] [Google Scholar]
- Herman E. H., Ferrans V. J. Influence of vitamin E and ICRF-187 on chronic doxorubicin cardiotoxicity in miniature swine. Lab Invest. 1983 Jul;49(1):69–77. [PubMed] [Google Scholar]
- Herman E. H., Ferrans V. J. Pretreatment with ICRF-187 provides long-lasting protection against chronic daunorubicin cardiotoxicity in rabbits. Cancer Chemother Pharmacol. 1986;16(2):102–106. doi: 10.1007/BF00256157. [DOI] [PubMed] [Google Scholar]
- Keizer H. G., Pinedo H. M., Schuurhuis G. J., Joenje H. Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacol Ther. 1990;47(2):219–231. doi: 10.1016/0163-7258(90)90088-j. [DOI] [PubMed] [Google Scholar]
- Koning J., Palmer P., Franks C. R., Mulder D. E., Speyer J. L., Green M. D., Hellmann K. Cardioxane--ICRF-187 towards anticancer drug specificity through selective toxicity reduction. Cancer Treat Rev. 1991 Mar;18(1):1–19. doi: 10.1016/0305-7372(91)90002-h. [DOI] [PubMed] [Google Scholar]
- Kramer K., van Acker S. A., Voss H. P., Grimbergen J. A., van der Vijgh W. J., Bast A. Use of telemetry to record electrocardiogram and heart rate in freely moving mice. J Pharmacol Toxicol Methods. 1993 Dec;30(4):209–215. doi: 10.1016/1056-8719(93)90019-b. [DOI] [PubMed] [Google Scholar]
- Laughton M. J., Halliwell B., Evans P. J., Hoult J. R. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochem Pharmacol. 1989 Sep 1;38(17):2859–2865. doi: 10.1016/0006-2952(89)90442-5. [DOI] [PubMed] [Google Scholar]
- McGinness J. E., Grossie B., Jr, Proctor P. H., Benjamin R. S., Gulati O. P., Hokanson J. A. Effect of dose schedule of vitamin E and hydroxethylruticide on intestinal toxicity induced by adriamycin. Physiol Chem Phys Med NMR. 1986;18(1):17–24. [PubMed] [Google Scholar]
- Monath T. P., Kemp G. E., Cropp C. B., Chandler F. W. Necrotizing myocarditis in mice infected with Western equine encephalitis virus: Clinical, electrocardiographic, and histopathologic correlations. J Infect Dis. 1978 Jul;138(1):59–66. doi: 10.1093/infdis/138.1.59. [DOI] [PubMed] [Google Scholar]
- Myers C. E., McGuire W. P., Liss R. H., Ifrim I., Grotzinger K., Young R. C. Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science. 1977 Jul 8;197(4299):165–167. doi: 10.1126/science.877547. [DOI] [PubMed] [Google Scholar]
- Myers C., Bonow R., Palmeri S., Jenkins J., Corden B., Locker G., Doroshow J., Epstein S. A randomized controlled trial assessing the prevention of doxorubicin cardiomyopathy by N-acetylcysteine. Semin Oncol. 1983 Mar;10(1 Suppl 1):53–55. [PubMed] [Google Scholar]
- Paracchini L., Jotti A., Bottiroli G., Prosperi E., Supino R., Piccinini F. The spin trap alpha-phenyl-tert-butyl nitrone protects against myelotoxicity and cardiotoxicity of adriamycin while preserving the cytotoxic activity. Anticancer Res. 1993 Sep-Oct;13(5A):1607–1612. [PubMed] [Google Scholar]
- Postan M., Bailey J. J., Dvorak J. A., McDaniel J. P., Pottala E. W. Studies of Trypanosoma cruzi clones in inbred mice. III. Histopathological and electrocardiographical responses to chronic infection. Am J Trop Med Hyg. 1987 Nov;37(3):541–549. doi: 10.4269/ajtmh.1987.37.541. [DOI] [PubMed] [Google Scholar]
- Pritsos C. A., Sokoloff M., Gustafson D. L. PZ-51 (Ebselen) in vivo protection against adriamycin-induced mouse cardiac and hepatic lipid peroxidation and toxicity. Biochem Pharmacol. 1992 Aug 18;44(4):839–841. doi: 10.1016/0006-2952(92)90427-k. [DOI] [PubMed] [Google Scholar]
- Rekka E., Kourounakis P. N. Effect of hydroxyethyl rutosides and related compounds on lipid peroxidation and free radical scavenging activity. Some structural aspects. J Pharm Pharmacol. 1991 Jul;43(7):486–491. doi: 10.1111/j.2042-7158.1991.tb03519.x. [DOI] [PubMed] [Google Scholar]
- Speyer J. L., Green M. D., Kramer E., Rey M., Sanger J., Ward C., Dubin N., Ferrans V., Stecy P., Zeleniuch-Jacquotte A. Protective effect of the bispiperazinedione ICRF-187 against doxorubicin-induced cardiac toxicity in women with advanced breast cancer. N Engl J Med. 1988 Sep 22;319(12):745–752. doi: 10.1056/NEJM198809223191203. [DOI] [PubMed] [Google Scholar]
- van Acker S. A., Voest E. E., Beems D. B., Madhuizen H. T., de Jong J., Bast A., van der Vijgh W. J. Cardioprotective properties of O-(beta-hydroxyethyl)-rutosides in doxorubicin-pretreated BALB/c mice. Cancer Res. 1993 Oct 1;53(19):4603–4607. [PubMed] [Google Scholar]
- van der Vijgh W. J., Maessen P. A., Pinedo H. M. Comparative metabolism and pharmacokinetics of doxorubicin and 4'-epidoxorubicin in plasma, heart and tumor of tumor-bearing mice. Cancer Chemother Pharmacol. 1990;26(1):9–12. doi: 10.1007/BF02940286. [DOI] [PubMed] [Google Scholar]
