Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Aug;115(7):1281–1289. doi: 10.1111/j.1476-5381.1995.tb15037.x

The hyperthermic and neurotoxic effects of 'Ecstasy' (MDMA) and 3,4 methylenedioxyamphetamine (MDA) in the Dark Agouti (DA) rat, a model of the CYP2D6 poor metabolizer phenotype.

M I Colado 1, J L Williams 1, A R Green 1
PMCID: PMC1908797  PMID: 7582557

Abstract

1. The effect of administration of 3,4-methylenedioxymethamphetamine (MDMA or 'Ecstasy') and its N-demethylated product, 3,4-methylenedioxyamphetamine (MDA) on both rectal temperature and long term neurotoxic loss of cerebral 5-hydroxytryptamine (5-HT) has been studied in male and female Dark Agouti (DA) rats. The female metabolizes debrisoquine more slowly than the male and its use has been suggested as a model of the human debrisoquine 4-hydroxylase poor metabolizer phenotype. 2. A novel h.p.l.c. method was developed and used to measure plasma MDMA and MDA concentrations in the DA rats. 3. The hyperthermic response following MDMA was enhanced in female rats. Plasma MDMA concentrations were also 57% higher than in males 45 min post-injection, while plasma concentrations of MDA were 48% lower. 4. Plasma concentrations of MDMA and MDA in male rats were unaffected by pretreatment with proadifen (15 mg kg-1) or quinidine (60 mg kg-1), but the hyperthermic response to MDMA (10 mg kg-1, i.p.) was enhanced by quinidine pretreatment. 5. The hyperthermic response following MDA was greater in male DA rats, despite plasma drug concentrations being 40% higher in females 60 min after injection. 6. Seven days after a single dose of MDMA (10 mg kg-1, i.p.) there was a substantial loss in the concentration of 5-HT and 5-hydroxyindoleacetic acid (5-HIA) in cortex and hippocampus. [3H]-paroxetine binding was also decreased by 27% in the cortex, indicating that the amine loss reflected a neurodegenerative change. MDMA (5 mg kg-1, i.p.) was without effect on brain 5-HT content.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1281

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Dabbagh S. G., Idle J. R., Smith R. L. Animal modelling of human polymorphic drug oxidation--the metabolism of debrisoquine and phenacetin in rat inbred strains. J Pharm Pharmacol. 1981 Mar;33(3):161–164. doi: 10.1111/j.2042-7158.1981.tb13740.x. [DOI] [PubMed] [Google Scholar]
  2. Barham H. M., Lennard M. S., Tucker G. T. An evaluation of cytochrome P450 isoform activities in the female dark agouti (DA) rat: relevance to its use as a model of the CYP2D6 poor metaboliser phenotype. Biochem Pharmacol. 1994 Apr 20;47(8):1295–1307. doi: 10.1016/0006-2952(94)90327-1. [DOI] [PubMed] [Google Scholar]
  3. Battaglia G., Yeh S. Y., O'Hearn E., Molliver M. E., Kuhar M. J., De Souza E. B. 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of [3H]paroxetine-labeled serotonin uptake sites. J Pharmacol Exp Ther. 1987 Sep;242(3):911–916. [PubMed] [Google Scholar]
  4. Boobis A. R., Seddon C. E., Davies D. S. Bufuralol 1'-hydroxylase activity of the rat. Strain differences and the effects of inhibitors. Biochem Pharmacol. 1986 Sep 1;35(17):2961–2965. doi: 10.1016/0006-2952(86)90493-4. [DOI] [PubMed] [Google Scholar]
  5. Brown C., Osterloh J. Multiple severe complications from recreational ingestion of MDMA ('Ecstasy') JAMA. 1987 Aug 14;258(6):780–781. [PubMed] [Google Scholar]
  6. Callaway C. W., Rempel N., Peng R. Y., Geyer M. A. Serotonin 5-HT1-like receptors mediate hyperactivity in rats induced by 3,4-methylenedioxymethamphetamine. Neuropsychopharmacology. 1992 Sep;7(2):113–127. [PubMed] [Google Scholar]
  7. Cao X., Phillis J. W. alpha-Phenyl-tert-butyl-nitrone reduces cortical infarct and edema in rats subjected to focal ischemia. Brain Res. 1994 May 2;644(2):267–272. doi: 10.1016/0006-8993(94)91689-6. [DOI] [PubMed] [Google Scholar]
  8. Carney J. M., Floyd R. A. Protection against oxidative damage to CNS by alpha-phenyl-tert-butyl nitrone (PBN) and other spin-trapping agents: a novel series of nonlipid free radical scavengers. J Mol Neurosci. 1991;3(1):47–57. doi: 10.1007/BF02896848. [DOI] [PubMed] [Google Scholar]
  9. Chadwick I. S., Curry P. D., Linsley A., Freemont A. J., Doran B. Ecstasy, 3-4 methylenedioxymethamphetamine (MDMA), a fatality associated with coagulopathy and hyperthermia. J R Soc Med. 1991 Jun;84(6):371–371. doi: 10.1177/014107689108400622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chiueh C. C., Miyake H., Peng M. T. Role of dopamine autoxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonism. Adv Neurol. 1993;60:251–258. [PubMed] [Google Scholar]
  11. Cho A. K., Hiramatsu M., Distefano E. W., Chang A. S., Jenden D. J. Stereochemical differences in the metabolism of 3,4-methylenedioxymethamphetamine in vivo and in vitro: a pharmacokinetic analysis. Drug Metab Dispos. 1990 Sep-Oct;18(5):686–691. [PubMed] [Google Scholar]
  12. Colado M. I., Green A. R. A study of the mechanism of MDMA ('ecstasy')-induced neurotoxicity of 5-HT neurones using chlormethiazole, dizocilpine and other protective compounds. Br J Pharmacol. 1994 Jan;111(1):131–136. doi: 10.1111/j.1476-5381.1994.tb14034.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Colado M. I., Murray T. K., Green A. R. 5-HT loss in rat brain following 3,4-methylenedioxymethamphetamine (MDMA), p-chloroamphetamine and fenfluramine administration and effects of chlormethiazole and dizocilpine. Br J Pharmacol. 1993 Mar;108(3):583–589. doi: 10.1111/j.1476-5381.1993.tb12846.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Commins D. L., Vosmer G., Virus R. M., Woolverton W. L., Schuster C. R., Seiden L. S. Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain. J Pharmacol Exp Ther. 1987 Apr;241(1):338–345. [PubMed] [Google Scholar]
  15. Dafters R. I. Effect of ambient temperature on hyperthermia and hyperkinesis induced by 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") in rats. Psychopharmacology (Berl) 1994 Apr;114(3):505–508. doi: 10.1007/BF02249342. [DOI] [PubMed] [Google Scholar]
  16. Dowling G. P., McDonough E. T., 3rd, Bost R. O. 'Eve' and 'Ecstasy'. A report of five deaths associated with the use of MDEA and MDMA. JAMA. 1987 Mar 27;257(12):1615–1617. doi: 10.1001/jama.257.12.1615. [DOI] [PubMed] [Google Scholar]
  17. Fukuto J. M., Kumagai Y., Cho A. K. Determination of the mechanism of demethylenation of (methylenedioxy)phenyl compounds by cytochrome P450 using deuterium isotope effects. J Med Chem. 1991 Sep;34(9):2871–2876. doi: 10.1021/jm00113a028. [DOI] [PubMed] [Google Scholar]
  18. Gibb J. W., Johnson M., Stone D., Hanson G. R. MDMA: historical perspectives. Ann N Y Acad Sci. 1990;600:601–612. doi: 10.1111/j.1749-6632.1990.tb16913.x. [DOI] [PubMed] [Google Scholar]
  19. Glennon R. A., Little P. J., Rosecrans J. A., Yousif M. The effect of MDMA ("Ecstasy") and its optical isomers on schedule-controlled responding in mice. Pharmacol Biochem Behav. 1987 Feb;26(2):425–426. doi: 10.1016/0091-3057(87)90141-9. [DOI] [PubMed] [Google Scholar]
  20. Gollamudi R., Ali S. F., Lipe G., Newport G., Webb P., Lopez M., Leakey J. E., Kolta M., Slikker W., Jr Influence of inducers and inhibitors on the metabolism in vitro and neurochemical effects in vivo of MDMA. Neurotoxicology. 1989 Fall;10(3):455–466. [PubMed] [Google Scholar]
  21. Gonzalez F. J., Meyer U. A. Molecular genetics of the debrisoquin-sparteine polymorphism. Clin Pharmacol Ther. 1991 Sep;50(3):233–238. doi: 10.1038/clpt.1991.131. [DOI] [PubMed] [Google Scholar]
  22. Gordon C. J., Watkinson W. P., O'Callaghan J. P., Miller D. B. Effects of 3,4-methylenedioxymethamphetamine on autonomic thermoregulatory responses of the rat. Pharmacol Biochem Behav. 1991 Feb;38(2):339–344. doi: 10.1016/0091-3057(91)90288-d. [DOI] [PubMed] [Google Scholar]
  23. Harvey J. A., McMaster S. E., Romano A. G. Methylenedioxyamphetamine: neurotoxic effects on serotonergic projections to brainstem nuclei in the rat. Brain Res. 1993 Aug 13;619(1-2):1–14. doi: 10.1016/0006-8993(93)91590-o. [DOI] [PubMed] [Google Scholar]
  24. Hekmatpanah C. R., McKenna D. J., Peroutka S. J. Reserpine does not prevent 3,4-methylenedioxymethamphetamine-induced neurotoxicity in the rat. Neurosci Lett. 1989 Sep 25;104(1-2):178–182. doi: 10.1016/0304-3940(89)90351-0. [DOI] [PubMed] [Google Scholar]
  25. Henry J. A., Jeffreys K. J., Dawling S. Toxicity and deaths from 3,4-methylenedioxymethamphetamine ("ecstasy") Lancet. 1992 Aug 15;340(8816):384–387. doi: 10.1016/0140-6736(92)91469-o. [DOI] [PubMed] [Google Scholar]
  26. Hewitt K. E., Green A. R. Chlormethiazole, dizocilpine and haloperidol prevent the degeneration of serotonergic nerve terminals induced by administration of MDMA ('Ecstasy') to rats. Neuropharmacology. 1994 Dec;33(12):1589–1595. doi: 10.1016/0028-3908(94)90134-1. [DOI] [PubMed] [Google Scholar]
  27. Hiramatsu M., Kumagai Y., Unger S. E., Cho A. K. Metabolism of methylenedioxymethamphetamine: formation of dihydroxymethamphetamine and a quinone identified as its glutathione adduct. J Pharmacol Exp Ther. 1990 Aug;254(2):521–527. [PubMed] [Google Scholar]
  28. Hiramatsu M., Nabeshima T., Kameyama T., Maeda Y., Cho A. K. The effect of optical isomers of 3,4-methylenedioxymethamphetamine (MDMA) on stereotyped behavior in rats. Pharmacol Biochem Behav. 1989 Jun;33(2):343–347. doi: 10.1016/0091-3057(89)90511-x. [DOI] [PubMed] [Google Scholar]
  29. Insel T. R., Battaglia G., Johannessen J. N., Marra S., De Souza E. B. 3,4-Methylenedioxymethamphetamine ("ecstasy") selectively destroys brain serotonin terminals in rhesus monkeys. J Pharmacol Exp Ther. 1989 Jun;249(3):713–720. [PubMed] [Google Scholar]
  30. Johnson M. P., Hoffman A. J., Nichols D. E. Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur J Pharmacol. 1986 Dec 16;132(2-3):269–276. doi: 10.1016/0014-2999(86)90615-1. [DOI] [PubMed] [Google Scholar]
  31. Johnson M., Elayan I., Hanson G. R., Foltz R. L., Gibb J. W., Lim H. K. Effects of 3,4-dihydroxymethamphetamine and 2,4,5-trihydroxymethamphetamine, two metabolites of 3,4-methylenedioxymethamphetamine, on central serotonergic and dopaminergic systems. J Pharmacol Exp Ther. 1992 May;261(2):447–453. [PubMed] [Google Scholar]
  32. Kobayashi S., Murray S., Watson D., Sesardic D., Davies D. S., Boobis A. R. The specificity of inhibition of debrisoquine 4-hydroxylase activity by quinidine and quinine in the rat is the inverse of that in man. Biochem Pharmacol. 1989 Sep 1;38(17):2795–2799. doi: 10.1016/0006-2952(89)90433-4. [DOI] [PubMed] [Google Scholar]
  33. Kumagai Y., Lin L. Y., Hiratsuka A., Narimatsu S., Suzuki T., Yamada H., Oguri K., Yoshimura H., Cho A. K. Participation of cytochrome P450-2B and -2D isozymes in the demethylenation of methylenedioxymethamphetamine enantiomers by rats. Mol Pharmacol. 1994 Feb;45(2):359–365. [PubMed] [Google Scholar]
  34. Kumagai Y., Lin L. Y., Philpot R. M., Yamada H., Oguri K., Yoshimura H., Cho A. K. Regiochemical differences in cytochrome P450 isozymes responsible for the oxidation of methylenedioxyphenyl groups by rabbit liver. Mol Pharmacol. 1992 Oct;42(4):695–702. [PubMed] [Google Scholar]
  35. Larrey D., Distlerath L. M., Dannan G. A., Wilkinson G. R., Guengerich F. P. Purification and characterization of the rat liver microsomal cytochrome P-450 involved in the 4-hydroxylation of debrisoquine, a prototype for genetic variation in oxidative drug metabolism. Biochemistry. 1984 Jun 5;23(12):2787–2795. doi: 10.1021/bi00307a039. [DOI] [PubMed] [Google Scholar]
  36. Lim H. K., Foltz R. L. Ion trap tandem mass spectrometric evidence for the metabolism of 3,4-(methylenedioxy)methamphetamine to the potent neurotoxins 2,4,5-trihydroxymethamphetamine and 2,4,5-trihydroxyamphetamine. Chem Res Toxicol. 1991 Nov-Dec;4(6):626–632. doi: 10.1021/tx00024a004. [DOI] [PubMed] [Google Scholar]
  37. Lin L. Y., Kumagai Y., Cho A. K. Enzymatic and chemical demethylenation of (methylenedioxy)amphetamine and (methylenedioxy)methamphetamine by rat brain microsomes. Chem Res Toxicol. 1992 May-Jun;5(3):401–406. doi: 10.1021/tx00027a013. [DOI] [PubMed] [Google Scholar]
  38. Matsunaga E., Zanger U. M., Hardwick J. P., Gelboin H. V., Meyer U. A., Gonzalez F. J. The CYP2D gene subfamily: analysis of the molecular basis of the debrisoquine 4-hydroxylase deficiency in DA rats. Biochemistry. 1989 Sep 5;28(18):7349–7355. doi: 10.1021/bi00444a030. [DOI] [PubMed] [Google Scholar]
  39. McKenna D. J., Guan X. M., Shulgin A. T. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol Biochem Behav. 1991 Mar;38(3):505–512. doi: 10.1016/0091-3057(91)90005-m. [DOI] [PubMed] [Google Scholar]
  40. Miller D. B., O'Callaghan J. P. Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther. 1994 Aug;270(2):752–760. [PubMed] [Google Scholar]
  41. Muralidharan G., Hawes E. M., McKay G., Midha K. K. Quinine is a more potent inhibitor than quinidine in rat of the oxidative metabolic routes of methoxyphenamine which involve debrisoquine 4-hydroxylase. Xenobiotica. 1991 Nov;21(11):1441–1450. doi: 10.3109/00498259109044394. [DOI] [PubMed] [Google Scholar]
  42. Nash J. F., Arora R. C., Schreiber M. A., Meltzer H. Y. Effect of 3,4-methylenedioxymethamphetamine on [3H]paroxetine binding in the frontal cortex and blood platelets of rats. Biochem Pharmacol. 1991 Jan 1;41(1):79–84. doi: 10.1016/0006-2952(91)90013-u. [DOI] [PubMed] [Google Scholar]
  43. Nash J. F., Jr, Meltzer H. Y., Gudelsky G. A. Elevation of serum prolactin and corticosterone concentrations in the rat after the administration of 3,4-methylenedioxymethamphetamine. J Pharmacol Exp Ther. 1988 Jun;245(3):873–879. [PubMed] [Google Scholar]
  44. O'Hearn E., Battaglia G., De Souza E. B., Kuhar M. J., Molliver M. E. Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity. J Neurosci. 1988 Aug;8(8):2788–2803. doi: 10.1523/JNEUROSCI.08-08-02788.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Paris J. M., Cunningham K. A. Lack of serotonin neurotoxicity after intraraphe microinjection of (+)-3,4-methylenedioxymethamphetamine (MDMA). Brain Res Bull. 1992 Jan;28(1):115–119. doi: 10.1016/0361-9230(92)90237-r. [DOI] [PubMed] [Google Scholar]
  46. Peroutka S. J. Incidence of recreational use of 3,4-methylenedimethoxymethamphetamine (MDMA, "ecstasy") on an undergraduate campus. N Engl J Med. 1987 Dec 10;317(24):1542–1543. doi: 10.1056/NEJM198712103172419. [DOI] [PubMed] [Google Scholar]
  47. Ricaurte G. A., DeLanney L. E., Wiener S. G., Irwin I., Langston J. W. 5-Hydroxyindoleacetic acid in cerebrospinal fluid reflects serotonergic damage induced by 3,4-methylenedioxymethamphetamine in CNS of non-human primates. Brain Res. 1988 Dec 6;474(2):359–363. doi: 10.1016/0006-8993(88)90451-9. [DOI] [PubMed] [Google Scholar]
  48. Ricaurte G. A., Forno L. S., Wilson M. A., DeLanney L. E., Irwin I., Molliver M. E., Langston J. W. (+/-)3,4-Methylenedioxymethamphetamine selectively damages central serotonergic neurons in nonhuman primates. JAMA. 1988 Jul 1;260(1):51–55. [PubMed] [Google Scholar]
  49. Ricaurte G., Bryan G., Strauss L., Seiden L., Schuster C. Hallucinogenic amphetamine selectively destroys brain serotonin nerve terminals. Science. 1985 Sep 6;229(4717):986–988. doi: 10.1126/science.4023719. [DOI] [PubMed] [Google Scholar]
  50. Schmidt C. J., Black C. K., Abbate G. M., Taylor V. L. Methylenedioxymethamphetamine-induced hyperthermia and neurotoxicity are independently mediated by 5-HT2 receptors. Brain Res. 1990 Oct 8;529(1-2):85–90. doi: 10.1016/0006-8993(90)90813-q. [DOI] [PubMed] [Google Scholar]
  51. Schmidt C. J. Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine. J Pharmacol Exp Ther. 1987 Jan;240(1):1–7. [PubMed] [Google Scholar]
  52. Schmidt C. J., Wu L., Lovenberg W. Methylenedioxymethamphetamine: a potentially neurotoxic amphetamine analogue. Eur J Pharmacol. 1986 May 13;124(1-2):175–178. doi: 10.1016/0014-2999(86)90140-8. [DOI] [PubMed] [Google Scholar]
  53. Sharkey J., McBean D. E., Kelly P. A. Alterations in hippocampal function following repeated exposure to the amphetamine derivative methylenedioxymethamphetamine ("Ecstasy"). Psychopharmacology (Berl) 1991;105(1):113–118. doi: 10.1007/BF02316872. [DOI] [PubMed] [Google Scholar]
  54. Slikker W., Jr, Holson R. R., Ali S. F., Kolta M. G., Paule M. G., Scallet A. C., McMillan D. E., Bailey J. R., Hong J. S., Scalzo F. M. Behavioral and neurochemical effects of orally administered MDMA in the rodent and nonhuman primate. Neurotoxicology. 1989 Fall;10(3):529–542. [PubMed] [Google Scholar]
  55. Spanos L. J., Yamamoto B. K. Acute and subchronic effects of methylenedioxymethamphetamine [(+/-)MDMA] on locomotion and serotonin syndrome behavior in the rat. Pharmacol Biochem Behav. 1989 Apr;32(4):835–840. doi: 10.1016/0091-3057(89)90044-0. [DOI] [PubMed] [Google Scholar]
  56. Steele T. D., Nichols D. E., Yim G. K. Stereochemical effects of 3,4-methylenedioxymethamphetamine (MDMA) and related amphetamine derivatives on inhibition of uptake of [3H]monoamines into synaptosomes from different regions of rat brain. Biochem Pharmacol. 1987 Jul 15;36(14):2297–2303. doi: 10.1016/0006-2952(87)90594-6. [DOI] [PubMed] [Google Scholar]
  57. Stone D. M., Stahl D. C., Hanson G. R., Gibb J. W. The effects of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on monoaminergic systems in the rat brain. Eur J Pharmacol. 1986 Aug 22;128(1-2):41–48. doi: 10.1016/0014-2999(86)90555-8. [DOI] [PubMed] [Google Scholar]
  58. Tucker G. T., Lennard M. S., Ellis S. W., Woods H. F., Cho A. K., Lin L. Y., Hiratsuka A., Schmitz D. A., Chu T. Y. The demethylenation of methylenedioxymethamphetamine ("ecstasy") by debrisoquine hydroxylase (CYP2D6). Biochem Pharmacol. 1994 Mar 29;47(7):1151–1156. doi: 10.1016/0006-2952(94)90386-7. [DOI] [PubMed] [Google Scholar]
  59. Vincent-Viry M., Deshayes S., Mothe O., Siest G., Galteau M. M. Hydroxylation of debrisoquine using perfused liver isolated from Sprague Dawley and DA rats: comparison with in-vivo results. J Pharm Pharmacol. 1988 Oct;40(10):695–700. [PubMed] [Google Scholar]
  60. Wilson M. A., Ricaurte G. A., Molliver M. E. Distinct morphologic classes of serotonergic axons in primates exhibit differential vulnerability to the psychotropic drug 3,4-methylenedioxymethamphetamine. Neuroscience. 1989;28(1):121–137. doi: 10.1016/0306-4522(89)90237-6. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES