Abstract
1. An experimental set up is used whereby the serosal (out)side or mucosal (in)side of the guinea-pig isolated tracheal tube can be stimulated selectively with drugs and reactivity measured. 2. Potassium induces a concentration-dependent (5-70 mM) monophasic contraction of tracheal tubes when added on the outside. In contrast, on the inside, potassium induces a concentration-dependent relaxation at low concentrations (5-40 mM) which was reversed into a contraction up to approximately basal tone at higher concentrations (50-70 mM). 3. Epithelium denudation reversed the potassium-induced relaxation into a contraction. Interestingly, in the 'half' epithelium-denuded trachea the contractions were significantly (P < 0.01) reduced by 46% compared to complete epithelium-denuded tissues. 4. Incubation with the nitric oxide (NO) synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME, 120 microM) for 30 min on the inside of the tracheal tube completely prevented the relaxation. However, L-NAME did not reverse the potassium-induced relaxation into a contraction. This indicates that potassium does not penetrate through the epithelial layer. 5. It is concluded that depolarization of smooth muscle cells leads to a monophasic contraction and that depolarization of the epithelium leads to a relaxation of tracheal smooth muscle. The epithelial layer has an important barrier function and can release relaxing factors like NO.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Djukanović R., Roche W. R., Wilson J. W., Beasley C. R., Twentyman O. P., Howarth R. H., Holgate S. T. Mucosal inflammation in asthma. Am Rev Respir Dis. 1990 Aug;142(2):434–457. doi: 10.1164/ajrccm/142.2.434. [DOI] [PubMed] [Google Scholar]
- Folkerts G., Engels F., Nijkamp F. P. Endotoxin-induced hyperreactivity of the guinea-pig isolated trachea coincides with decreased prostaglandin E2 production by the epithelial layer. Br J Pharmacol. 1989 Feb;96(2):388–394. doi: 10.1111/j.1476-5381.1989.tb11829.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Folkerts G., Verheyen A. K., Geuens G. M., Folkerts H. F., Nijkamp F. P. Virus-induced changes in airway responsiveness, morphology, and histamine levels in guinea pigs. Am Rev Respir Dis. 1993 Jun;147(6 Pt 1):1569–1577. doi: 10.1164/ajrccm/147.6_Pt_1.1569. [DOI] [PubMed] [Google Scholar]
- Folkerts G., Verheyen A., Nijkamp F. P. Viral infection in guinea pigs induces a sustained non-specific airway hyperresponsiveness and morphological changes of the respiratory tract. Eur J Pharmacol. 1992 Sep 1;228(2-3):121–130. doi: 10.1016/0926-6917(92)90021-4. [DOI] [PubMed] [Google Scholar]
- Folkerts G., van der Linde H. J., Nijkamp F. P. Virus-induced airway hyperresponsiveness in guinea pigs is related to a deficiency in nitric oxide. J Clin Invest. 1995 Jan;95(1):26–30. doi: 10.1172/JCI117649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gao Y., Vanhoutte P. M. Epithelium acts as a modulator and a diffusion barrier in the responses of canine airway smooth muscle. J Appl Physiol (1985) 1994 May;76(5):1843–1847. doi: 10.1152/jappl.1994.76.5.1843. [DOI] [PubMed] [Google Scholar]
- Kharitonov S. A., Yates D., Robbins R. A., Logan-Sinclair R., Shinebourne E. A., Barnes P. J. Increased nitric oxide in exhaled air of asthmatic patients. Lancet. 1994 Jan 15;343(8890):133–135. doi: 10.1016/s0140-6736(94)90931-8. [DOI] [PubMed] [Google Scholar]
- Kobzik L., Bredt D. S., Lowenstein C. J., Drazen J., Gaston B., Sugarbaker D., Stamler J. S. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am J Respir Cell Mol Biol. 1993 Oct;9(4):371–377. doi: 10.1165/ajrcmb/9.4.371. [DOI] [PubMed] [Google Scholar]
- Laitinen L. A., Heino M., Laitinen A., Kava T., Haahtela T. Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis. 1985 Apr;131(4):599–606. doi: 10.1164/arrd.1985.131.4.599. [DOI] [PubMed] [Google Scholar]
- Lei Y. H., Barnes P. J., Rogers D. F. Regulation of NANC neural bronchoconstriction in vivo in the guinea-pig: involvement of nitric oxide, vasoactive intestinal peptide and soluble guanylyl cyclase. Br J Pharmacol. 1993 Jan;108(1):228–235. doi: 10.1111/j.1476-5381.1993.tb13467.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Menon N. K., Patricza J., Binder T., Bing R. J. Reduction of biological effluents in purge and trap micro reaction vessels and detection of endothelium-derived nitric oxide (edno) by chemiluminescence. J Mol Cell Cardiol. 1991 Apr;23(4):389–393. doi: 10.1016/0022-2828(91)90162-f. [DOI] [PubMed] [Google Scholar]
- Munakata M., Huang I., Mitzner W., Menkes H. Protective role of epithelium in the guinea pig airway. J Appl Physiol (1985) 1989 Apr;66(4):1547–1552. doi: 10.1152/jappl.1989.66.4.1547. [DOI] [PubMed] [Google Scholar]
- Munakata M., Masaki Y., Sakuma I., Ukita H., Otsuka Y., Homma Y., Kawakami Y. Pharmacological differentiation of epithelium-derived relaxing factor from nitric oxide. J Appl Physiol (1985) 1990 Aug;69(2):665–670. doi: 10.1152/jappl.1990.69.2.665. [DOI] [PubMed] [Google Scholar]
- Munakata M., Mitzner W., Menkes H. Osmotic stimuli induce epithelial-dependent relaxation in the guinea pig trachea. J Appl Physiol (1985) 1988 Jan;64(1):466–471. doi: 10.1152/jappl.1988.64.1.466. [DOI] [PubMed] [Google Scholar]
- Nielsen-Kudsk J. E., Karlsson J. A., Persson C. G. Relaxant effects of xanthines, a beta 2-receptor agonist and Ca2+ antagonists in guinea-pig tracheal preparations contracted by potassium or carbachol. Eur J Pharmacol. 1986 Aug 22;128(1-2):33–40. doi: 10.1016/0014-2999(86)90554-6. [DOI] [PubMed] [Google Scholar]
- Nijkamp F. P., Folkerts G. Nitric oxide and bronchial reactivity. Clin Exp Allergy. 1994 Oct;24(10):905–914. doi: 10.1111/j.1365-2222.1994.tb02721.x. [DOI] [PubMed] [Google Scholar]
- Nijkamp F. P., Folkerts G. Reversal of arachidonic acid-induced guinea-pig tracheal relaxation into contraction after epithelium removal. Eur J Pharmacol. 1986 Nov 19;131(2-3):315–316. doi: 10.1016/0014-2999(86)90591-1. [DOI] [PubMed] [Google Scholar]
- Nijkamp F. P., van der Linde H. J., Folkerts G. Nitric oxide synthesis inhibitors induce airway hyperresponsiveness in the guinea pig in vivo and in vitro. Role of the epithelium. Am Rev Respir Dis. 1993 Sep;148(3):727–734. doi: 10.1164/ajrccm/148.3.727. [DOI] [PubMed] [Google Scholar]
- Pavlovic D., Fournier M., Aubier M., Pariente R. Epithelial vs. serosal stimulation of tracheal muscle: role of epithelium. J Appl Physiol (1985) 1989 Dec;67(6):2522–2526. doi: 10.1152/jappl.1989.67.6.2522. [DOI] [PubMed] [Google Scholar]
- Persson M. G., Wiklund N. P., Gustafsson L. E. Endogenous nitric oxide in single exhalations and the change during exercise. Am Rev Respir Dis. 1993 Nov;148(5):1210–1214. doi: 10.1164/ajrccm/148.5.1210. [DOI] [PubMed] [Google Scholar]
- Robbins R. A., Hamel F. G., Floreani A. A., Gossman G. L., Nelson K. J., Belenky S., Rubinstein I. Bovine bronchial epithelial cells metabolize L-arginine to L-citrulline: possible role of nitric oxide synthase. Life Sci. 1993;52(8):709–716. doi: 10.1016/0024-3205(93)90232-r. [DOI] [PubMed] [Google Scholar]
- Sparrow M. P., Mitchell H. W. Modulation by the epithelium of the extent of bronchial narrowing produced by substances perfused through the lumen. Br J Pharmacol. 1991 May;103(1):1160–1164. doi: 10.1111/j.1476-5381.1991.tb12317.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanhoutte P. M. Epithelium-derived relaxing factor(s) and bronchial reactivity. J Allergy Clin Immunol. 1989 May;83(5):855–861. doi: 10.1016/0091-6749(89)90095-x. [DOI] [PubMed] [Google Scholar]
- Welsh M. J. Electrolyte transport by airway epithelia. Physiol Rev. 1987 Oct;67(4):1143–1184. doi: 10.1152/physrev.1987.67.4.1143. [DOI] [PubMed] [Google Scholar]