Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Aug;115(7):1211–1214. doi: 10.1111/j.1476-5381.1995.tb15027.x

Increased sensitivity of rat myometrium to the contractile effect of platelet activating factor before delivery.

B K Kim 1, H Ozaki 1, S M Lee 1, H Karaki 1
PMCID: PMC1908802  PMID: 7582547

Abstract

1. The contractile effects of platelet activating factor (PAF) were compared in the myometrium isolated from non-pregnant and pregnant rats. 2. In the non-pregnant myometrium, PAF, at a concentration of 0.1 microM, did not change muscle tension and induced only a small transient contraction at 10 microM. 3. The contractile responses to PAF increased with the progress of gestation. In the late pregnant myometrium (21 day after gestation), PAF (0.1 nM-10 microM) induced large and relatively sustained contractions. The threshold concentration of PAF was decreased by approximately 10,000 times and the maximum contraction was increased 5 times by day 21 of gestation. 4. PAF (10 microM) increased the cytosolic Ca2+ concentration ([Ca2+]i) and muscle contraction to levels higher than those induced by high K+ in the pregnant rat myometrium (day 21). Verapamil (10 microM), a voltage-dependent Ca2+ channel blocker, decreased the stimulated [Ca2+]i and muscle tension to 49.6% and 22.7%, respectively, while the same concentration of verapamil completely inhibited the high K(+)-induced responses. 5. PAF (10 microM) induced a transient increase in [Ca2+]i with no contraction in the absence of external Ca2+ in the pregnant myometrium (day 21). 6. These results suggest that PAF induces contraction in rat myometrium by increasing Ca2+ influx. Although PAF released Ca2+ from stored sites, this Ca2+ does not seem to contribute to the PAF-induced contraction. Our major finding is that the sensitivity of the myometrium to PAF increased after gestation and that this may play a role in delivery.

Full text

PDF
1211

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandrova M., Soloff M. S. Oxytocin receptors and parturition. I. Control of oxytocin receptor concentration in the rat myometrium at term. Endocrinology. 1980 Mar;106(3):730–735. doi: 10.1210/endo-106-3-730. [DOI] [PubMed] [Google Scholar]
  2. Anwer K., Sanborn B. M. Changes in intracellular free calcium in isolated myometrial cells: role of extracellular and intracellular calcium and possible involvement of guanine nucleotide-sensitive proteins. Endocrinology. 1989 Jan;124(1):17–23. doi: 10.1210/endo-124-1-17. [DOI] [PubMed] [Google Scholar]
  3. Benham C. D., Tsien R. W. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature. 1987 Jul 16;328(6127):275–278. doi: 10.1038/328275a0. [DOI] [PubMed] [Google Scholar]
  4. Criswell K. A., Stuenkel E. L., Loch-Caruso R. Lindane increases intracellular calcium in rat myometrial smooth muscle cells through modulation of inositol 1,4,5-trisphosphate-sensitive stores. J Pharmacol Exp Ther. 1994 Sep;270(3):1015–1024. [PubMed] [Google Scholar]
  5. Findlay S. R., Lichtenstein L. M., Hanahan D. J., Pinckard R. N. Contraction of guinea pig ileal smooth muscle by acetyl glyceryl ether phosphorylcholine. Am J Physiol. 1981 Sep;241(3):C130–C133. doi: 10.1152/ajpcell.1981.241.3.C130. [DOI] [PubMed] [Google Scholar]
  6. Hoffman D. R., Romero R., Johnston J. M. Detection of platelet-activating factor in amniotic fluid of complicated pregnancies. Am J Obstet Gynecol. 1990 Feb;162(2):525–528. doi: 10.1016/0002-9378(90)90423-5. [DOI] [PubMed] [Google Scholar]
  7. Honoré E., Martin C., Mironneau C., Mironneau J. An ATP-sensitive conductance in cultured smooth muscle cells from pregnant rat myometrium. Am J Physiol. 1989 Aug;257(2 Pt 1):C297–C305. doi: 10.1152/ajpcell.1989.257.2.C297. [DOI] [PubMed] [Google Scholar]
  8. Inoue R., Kitamura K., Kuriyama H. Acetylcholine activates single sodium channels in smooth muscle cells. Pflugers Arch. 1987 Sep;410(1-2):69–74. doi: 10.1007/BF00581898. [DOI] [PubMed] [Google Scholar]
  9. Karaki H. Ca2+ localization and sensitivity in vascular smooth muscle. Trends Pharmacol Sci. 1989 Aug;10(8):320–325. doi: 10.1016/0165-6147(89)90066-7. [DOI] [PubMed] [Google Scholar]
  10. Karaki H., Weiss G. B. Calcium channels in smooth muscle. Gastroenterology. 1984 Oct;87(4):960–970. [PubMed] [Google Scholar]
  11. Levy J. V. Spasmogenic effect of platelet activating factor (PAF) on isolated rat stomach fundus strip. Biochem Biophys Res Commun. 1987 Jul 31;146(2):855–860. doi: 10.1016/0006-291x(87)90609-7. [DOI] [PubMed] [Google Scholar]
  12. Maki N., Hoffman D. R., Johnston J. M. Platelet-activating factor acetylhydrolase activity in maternal, fetal, and newborn rabbit plasma during pregnancy and lactation. Proc Natl Acad Sci U S A. 1988 Feb;85(3):728–732. doi: 10.1073/pnas.85.3.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nishihira J., Ishibashi T., Imai Y., Muramatsu T. Mass spectrometric evidence for the presence of platelet-activating factor (1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in human amniotic fluid during labor. Lipids. 1984 Dec;19(12):907–910. doi: 10.1007/BF02534724. [DOI] [PubMed] [Google Scholar]
  14. Ozaki H., Karaki H. Different Ca(2+)-sensitivity in phasic and tonic types of smooth muscles. Biol Signals. 1993 Sep-Oct;2(5):253–262. doi: 10.1159/000109506. [DOI] [PubMed] [Google Scholar]
  15. Ozaki H., Sato K., Satoh T., Karaki H. Simultaneous recordings of calcium signals and mechanical activity using fluorescent dye fura 2 in isolated strips of vascular smooth muscle. Jpn J Pharmacol. 1987 Nov;45(3):429–433. doi: 10.1254/jjp.45.429. [DOI] [PubMed] [Google Scholar]
  16. Prescott S. M., Zimmerman G. A., McIntyre T. M. Platelet-activating factor. J Biol Chem. 1990 Oct 15;265(29):17381–17384. [PubMed] [Google Scholar]
  17. Sakata K., Karaki H. Effects of endothelin on cytosolic Ca2+ level and mechanical activity in rat uterine smooth muscle. Eur J Pharmacol. 1992 Oct 6;221(1):9–15. doi: 10.1016/0014-2999(92)90766-w. [DOI] [PubMed] [Google Scholar]
  18. Sato K., Ozaki H., Karaki H. Changes in cytosolic calcium level in vascular smooth muscle strip measured simultaneously with contraction using fluorescent calcium indicator fura 2. J Pharmacol Exp Ther. 1988 Jul;246(1):294–300. [PubMed] [Google Scholar]
  19. Somlyo A. P., Himpens B. Cell calcium and its regulation in smooth muscle. FASEB J. 1989 Sep;3(11):2266–2276. doi: 10.1096/fasebj.3.11.2506092. [DOI] [PubMed] [Google Scholar]
  20. Somlyo A. P., Somlyo A. V. Signal transduction and regulation in smooth muscle. Nature. 1994 Nov 17;372(6503):231–236. doi: 10.1038/372231a0. [DOI] [PubMed] [Google Scholar]
  21. Szal S. E., Repke J. T., Seely E. W., Graves S. W., Parker C. A., Morgan K. G. [Ca2+]i signaling in pregnant human myometrium. Am J Physiol. 1994 Jul;267(1 Pt 1):E77–E87. doi: 10.1152/ajpendo.1994.267.1.E77. [DOI] [PubMed] [Google Scholar]
  22. Zhu Y. P., Hoffman D. R., Hwang S. B., Miyaura S., Johnston J. M. Prolongation of parturition in the pregnant rat following treatment with a platelet activating factor receptor antagonist. Biol Reprod. 1991 Jan;44(1):39–42. doi: 10.1095/biolreprod44.1.39. [DOI] [PubMed] [Google Scholar]
  23. Zhu Y. P., Word R. A., Johnston J. M. The presence of platelet-activating factor binding sites in human myometrium and their role in uterine contraction. Am J Obstet Gynecol. 1992 Apr;166(4):1222–1227. doi: 10.1016/s0002-9378(11)90610-3. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES