Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Nov;70(11):8081–8088. doi: 10.1128/jvi.70.11.8081-8088.1996

Virus-specific interaction between the human cytomegalovirus major capsid protein and the C terminus of the assembly protein precursor.

M Beaudet-Miller 1, R Zhang 1, J Durkin 1, W Gibson 1, A D Kwong 1, Z Hong 1
PMCID: PMC190882  PMID: 8892933

Abstract

We previously identified a minimal 12-amino-acid domain in the C terminus of the herpes simplex virus type 1 (HSV-1) scaffolding protein which is required for interaction with the HSV-1 major capsid protein. An alpha-helical structure which maximizes the hydropathicity of the minimal domain is required for the interaction. To address whether cytomegalovirus (CMV) utilizes the same strategy for capsid assembly, several glutathione S-transferase fusion proteins to the C terminus of the CMV assembly protein precursor were produced and purified from bacterial cells. The study showed that the glutathione S-transferase fusion containing 16 amino acids near the C-terminal end was sufficient to interact with the major capsid protein. Interestingly, no cross-interaction between HSV-1 and CMV could be detected. Mutation analysis revealed that a three-amino-acid region at the N-terminal side of the central Phe residue of the CMV interaction domain played a role in determining the viral specificity of the interaction. When this region was converted so as to correspond to that of HSV-1, the CMV assembly protein domain lost its ability to interact with the CMV major capsid protein but gained full interaction with the HSV-1 major capsid protein. To address whether the minimal interaction domain of the CMV assembly protein forms an alpha-helical structure similar to that in HSV-1, peptide competition experiments were carried out. The results showed that a cyclic peptide derived from the interaction domain with a constrained (alpha-helical structure competed for interaction with the major capsid protein much more efficiently than the unconstrained linear peptide. In contrast, a cyclic peptide containing an Ala substitution for the critical Phe residue did not compete for the interaction at all. The results of this study suggest that (i) CMV may have developed a strategy similar to that of HSV-1 for capsid assembly; (ii) the minimal interaction motif in the CMV assembly protein requires an alpha-helix for efficient interaction with the major capsid protein; and (iii) the Phe residue in the CMV minimal interaction domain is critical for interaction with the major capsid protein.

Full Text

The Full Text of this article is available as a PDF (419.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker T. S., Newcomb W. W., Booy F. P., Brown J. C., Steven A. C. Three-dimensional structures of maturable and abortive capsids of equine herpesvirus 1 from cryoelectron microscopy. J Virol. 1990 Feb;64(2):563–573. doi: 10.1128/jvi.64.2.563-573.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baum E. Z., Bebernitz G. A., Hulmes J. D., Muzithras V. P., Jones T. R., Gluzman Y. Expression and analysis of the human cytomegalovirus UL80-encoded protease: identification of autoproteolytic sites. J Virol. 1993 Jan;67(1):497–506. doi: 10.1128/jvi.67.1.497-506.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Casjens S., King J. Virus assembly. Annu Rev Biochem. 1975;44:555–611. doi: 10.1146/annurev.bi.44.070175.003011. [DOI] [PubMed] [Google Scholar]
  4. Darke P. L., Chen E., Hall D. L., Sardana M. K., Veloski C. A., LaFemina R. L., Shafer J. A., Kuo L. C. Purification of active herpes simplex virus-1 protease expressed in Escherichia coli. J Biol Chem. 1994 Jul 22;269(29):18708–18711. [PubMed] [Google Scholar]
  5. Darlington R. W., Moss L. H., 3rd Herpesvirus envelopment. J Virol. 1968 Jan;2(1):48–55. doi: 10.1128/jvi.2.1.48-55.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davison M. D., Rixon F. J., Davison A. J. Identification of genes encoding two capsid proteins (VP24 and VP26) of herpes simplex virus type 1. J Gen Virol. 1992 Oct;73(Pt 10):2709–2713. doi: 10.1099/0022-1317-73-10-2709. [DOI] [PubMed] [Google Scholar]
  7. Desai P., Person S. Molecular interactions between the HSV-1 capsid proteins as measured by the yeast two-hybrid system. Virology. 1996 Jun 15;220(2):516–521. doi: 10.1006/viro.1996.0341. [DOI] [PubMed] [Google Scholar]
  8. Desai P., Watkins S. C., Person S. The size and symmetry of B capsids of herpes simplex virus type 1 are determined by the gene products of the UL26 open reading frame. J Virol. 1994 Sep;68(9):5365–5374. doi: 10.1128/jvi.68.9.5365-5374.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DiIanni C. L., Drier D. A., Deckman I. C., McCann P. J., 3rd, Liu F., Roizman B., Colonno R. J., Cordingley M. G. Identification of the herpes simplex virus-1 protease cleavage sites by direct sequence analysis of autoproteolytic cleavage products. J Biol Chem. 1993 Jan 25;268(3):2048–2051. [PubMed] [Google Scholar]
  10. Donaghy G., Jupp R. Characterization of the Epstein-Barr virus proteinase and comparison with the human cytomegalovirus proteinase. J Virol. 1995 Feb;69(2):1265–1270. doi: 10.1128/jvi.69.2.1265-1270.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Felix A. M., Heimer E. P., Wang C. T., Lambros T. J., Fournier A., Mowles T. F., Maines S., Campbell R. M., Wegrzynski B. B., Toome V. Synthesis, biological activity and conformational analysis of cyclic GRF analogs. Int J Pept Protein Res. 1988 Dec;32(6):441–454. doi: 10.1111/j.1399-3011.1988.tb01375.x. [DOI] [PubMed] [Google Scholar]
  12. Gao M., Matusick-Kumar L., Hurlburt W., DiTusa S. F., Newcomb W. W., Brown J. C., McCann P. J., 3rd, Deckman I., Colonno R. J. The protease of herpes simplex virus type 1 is essential for functional capsid formation and viral growth. J Virol. 1994 Jun;68(6):3702–3712. doi: 10.1128/jvi.68.6.3702-3712.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gibson W., Marcy A. I., Comolli J. C., Lee J. Identification of precursor to cytomegalovirus capsid assembly protein and evidence that processing results in loss of its carboxy-terminal end. J Virol. 1990 Mar;64(3):1241–1249. doi: 10.1128/jvi.64.3.1241-1249.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gibson W., Roizman B. Proteins specified by herpes simplex virus. 8. Characterization and composition of multiple capsid forms of subtypes 1 and 2. J Virol. 1972 Nov;10(5):1044–1052. doi: 10.1128/jvi.10.5.1044-1052.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gouy M., Gautier C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 1982 Nov 25;10(22):7055–7074. doi: 10.1093/nar/10.22.7055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Greene B., King J. Binding of scaffolding subunits within the P22 procapsid lattice. Virology. 1994 Nov 15;205(1):188–197. doi: 10.1006/viro.1994.1634. [DOI] [PubMed] [Google Scholar]
  17. Hall M. R., Gibson W. Cytomegalovirus assemblin: the amino and carboxyl domains of the proteinase form active enzyme when separately cloned and coexpressed in eukaryotic cells. J Virol. 1996 Aug;70(8):5395–5404. doi: 10.1128/jvi.70.8.5395-5404.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holwerda B. C., Wittwer A. J., Duffin K. L., Smith C., Toth M. V., Carr L. S., Wiegand R. C., Bryant M. L. Activity of two-chain recombinant human cytomegalovirus protease. J Biol Chem. 1994 Oct 14;269(41):25911–25915. [PubMed] [Google Scholar]
  19. Hong Z., Beaudet-Miller M., Durkin J., Zhang R., Kwong A. D. Identification of a minimal hydrophobic domain in the herpes simplex virus type 1 scaffolding protein which is required for interaction with the major capsid protein. J Virol. 1996 Jan;70(1):533–540. doi: 10.1128/jvi.70.1.533-540.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kennard J., Rixon F. J., McDougall I. M., Tatman J. D., Preston V. G. The 25 amino acid residues at the carboxy terminus of the herpes simplex virus type 1 UL26.5 protein are required for the formation of the capsid shell around the scaffold. J Gen Virol. 1995 Jul;76(Pt 7):1611–1621. doi: 10.1099/0022-1317-76-7-1611. [DOI] [PubMed] [Google Scholar]
  21. Liu F. Y., Roizman B. The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. J Virol. 1991 Oct;65(10):5149–5156. doi: 10.1128/jvi.65.10.5149-5156.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu F. Y., Roizman B. The promoter, transcriptional unit, and coding sequence of herpes simplex virus 1 family 35 proteins are contained within and in frame with the UL26 open reading frame. J Virol. 1991 Jan;65(1):206–212. doi: 10.1128/jvi.65.1.206-212.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liu F., Roizman B. Characterization of the protease and other products of amino-terminus-proximal cleavage of the herpes simplex virus 1 UL26 protein. J Virol. 1993 Mar;67(3):1300–1309. doi: 10.1128/jvi.67.3.1300-1309.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marqusee S., Baldwin R. L. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8898–8902. doi: 10.1073/pnas.84.24.8898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matusick-Kumar L., Hurlburt W., Weinheimer S. P., Newcomb W. W., Brown J. C., Gao M. Phenotype of the herpes simplex virus type 1 protease substrate ICP35 mutant virus. J Virol. 1994 Sep;68(9):5384–5394. doi: 10.1128/jvi.68.9.5384-5394.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Matusick-Kumar L., McCann P. J., 3rd, Robertson B. J., Newcomb W. W., Brown J. C., Gao M. Release of the catalytic domain N(o) from the herpes simplex virus type 1 protease is required for viral growth. J Virol. 1995 Nov;69(11):7113–7121. doi: 10.1128/jvi.69.11.7113-7121.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Matusick-Kumar L., Newcomb W. W., Brown J. C., McCann P. J., 3rd, Hurlburt W., Weinheimer S. P., Gao M. The C-terminal 25 amino acids of the protease and its substrate ICP35 of herpes simplex virus type 1 are involved in the formation of sealed capsids. J Virol. 1995 Jul;69(7):4347–4356. doi: 10.1128/jvi.69.7.4347-4356.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Newcomb W. W., Brown J. C. Induced extrusion of DNA from the capsid of herpes simplex virus type 1. J Virol. 1994 Jan;68(1):433–440. doi: 10.1128/jvi.68.1.433-440.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Newcomb W. W., Brown J. C. Structure of the herpes simplex virus capsid: effects of extraction with guanidine hydrochloride and partial reconstitution of extracted capsids. J Virol. 1991 Feb;65(2):613–620. doi: 10.1128/jvi.65.2.613-620.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Newcomb W. W., Brown J. C. Use of Ar+ plasma etching to localize structural proteins in the capsid of herpes simplex virus type 1. J Virol. 1989 Nov;63(11):4697–4702. doi: 10.1128/jvi.63.11.4697-4702.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Newcomb W. W., Homa F. L., Thomsen D. R., Ye Z., Brown J. C. Cell-free assembly of the herpes simplex virus capsid. J Virol. 1994 Sep;68(9):6059–6063. doi: 10.1128/jvi.68.9.6059-6063.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Newcomb W. W., Trus B. L., Booy F. P., Steven A. C., Wall J. S., Brown J. C. Structure of the herpes simplex virus capsid. Molecular composition of the pentons and the triplexes. J Mol Biol. 1993 Jul 20;232(2):499–511. doi: 10.1006/jmbi.1993.1406. [DOI] [PubMed] [Google Scholar]
  33. Nicholson P., Addison C., Cross A. M., Kennard J., Preston V. G., Rixon F. J. Localization of the herpes simplex virus type 1 major capsid protein VP5 to the cell nucleus requires the abundant scaffolding protein VP22a. J Gen Virol. 1994 May;75(Pt 5):1091–1099. doi: 10.1099/0022-1317-75-5-1091. [DOI] [PubMed] [Google Scholar]
  34. O'Boyle D. R., 2nd, Wager-Smith K., Stevens J. T., 3rd, Weinheimer S. P. The effect of internal autocleavage on kinetic properties of the human cytomegalovirus protease catalytic domain. J Biol Chem. 1995 Mar 3;270(9):4753–4758. doi: 10.1074/jbc.270.9.4753. [DOI] [PubMed] [Google Scholar]
  35. Patel A. H., MacLean J. B. The product of the UL6 gene of herpes simplex virus type 1 is associated with virus capsids. Virology. 1995 Jan 10;206(1):465–478. doi: 10.1016/s0042-6822(95)80062-x. [DOI] [PubMed] [Google Scholar]
  36. Perdue M. L., Cohen J. C., Kemp M. C., Randall C. C., O'Callaghan D. J. Characterization of three species of nucleocapsids of equine herpesvirus type-1 (EHV-1). Virology. 1975 Mar;64(1):187–204. doi: 10.1016/0042-6822(75)90091-4. [DOI] [PubMed] [Google Scholar]
  37. Person S., Laquerre S., Desai P., Hempel J. Herpes simplex virus type 1 capsid protein, VP21, originates within the UL26 open reading frame. J Gen Virol. 1993 Oct;74(Pt 10):2269–2273. doi: 10.1099/0022-1317-74-10-2269. [DOI] [PubMed] [Google Scholar]
  38. Preston V. G., Coates J. A., Rixon F. J. Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. J Virol. 1983 Mar;45(3):1056–1064. doi: 10.1128/jvi.45.3.1056-1064.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Preston V. G., Rixon F. J., McDougall I. M., McGregor M., al Kobaisi M. F. Processing of the herpes simplex virus assembly protein ICP35 near its carboxy terminal end requires the product of the whole of the UL26 reading frame. Virology. 1992 Jan;186(1):87–98. doi: 10.1016/0042-6822(92)90063-u. [DOI] [PubMed] [Google Scholar]
  40. Robertson B. J., McCann P. J., 3rd, Matusick-Kumar L., Newcomb W. W., Brown J. C., Colonno R. J., Gao M. Separate functional domains of the herpes simplex virus type 1 protease: evidence for cleavage inside capsids. J Virol. 1996 Jul;70(7):4317–4328. doi: 10.1128/jvi.70.7.4317-4328.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schrag J. D., Prasad B. V., Rixon F. J., Chiu W. Three-dimensional structure of the HSV1 nucleocapsid. Cell. 1989 Feb 24;56(4):651–660. doi: 10.1016/0092-8674(89)90587-4. [DOI] [PubMed] [Google Scholar]
  42. Schwartz J., Roizman B. Similarities and Differences in the Development of Laboratory Strains and Freshly Isolated Strains of Herpes Simplex Virus in HEp-2 Cells: Electron Microscopy. J Virol. 1969 Dec;4(6):879–889. doi: 10.1128/jvi.4.6.879-889.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sherman G., Bachenheimer S. L. Characterization of intranuclear capsids made by ts morphogenic mutants of HSV-1. Virology. 1988 Apr;163(2):471–480. doi: 10.1016/0042-6822(88)90288-7. [DOI] [PubMed] [Google Scholar]
  44. Stevenson C. L., Friedman A. R., Kubiak T. M., Donlan M. E., Borchardt R. T. Effect of secondary structure on the rate of deamidation of several growth hormone releasing factor analogs. Int J Pept Protein Res. 1993 Dec;42(6):497–503. doi: 10.1111/j.1399-3011.1993.tb00356.x. [DOI] [PubMed] [Google Scholar]
  45. Tatman J. D., Preston V. G., Nicholson P., Elliott R. M., Rixon F. J. Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. J Gen Virol. 1994 May;75(Pt 5):1101–1113. doi: 10.1099/0022-1317-75-5-1101. [DOI] [PubMed] [Google Scholar]
  46. Thomsen D. R., Newcomb W. W., Brown J. C., Homa F. L. Assembly of the herpes simplex virus capsid: requirement for the carboxyl-terminal twenty-five amino acids of the proteins encoded by the UL26 and UL26.5 genes. J Virol. 1995 Jun;69(6):3690–3703. doi: 10.1128/jvi.69.6.3690-3703.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Thomsen D. R., Roof L. L., Homa F. L. Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. J Virol. 1994 Apr;68(4):2442–2457. doi: 10.1128/jvi.68.4.2442-2457.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Trus B. L., Newcomb W. W., Booy F. P., Brown J. C., Steven A. C. Distinct monoclonal antibodies separately label the hexons or the pentons of herpes simplex virus capsid. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11508–11512. doi: 10.1073/pnas.89.23.11508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vernon S. K., Ponce de Leon M., Cohen G. H., Eisenberg R. J., Rubin B. A. Morphological components of herpesvirus. III. Localization of herpes simplex virus type 1 nucleocapsid polypeptides by immune electron microscopy. J Gen Virol. 1981 May;54(Pt 1):39–46. doi: 10.1099/0022-1317-54-1-39. [DOI] [PubMed] [Google Scholar]
  50. Ward P. L., Barker D. E., Roizman B. A novel herpes simplex virus 1 gene, UL43.5, maps antisense to the UL43 gene and encodes a protein which colocalizes in nuclear structures with capsid proteins. J Virol. 1996 May;70(5):2684–2690. doi: 10.1128/jvi.70.5.2684-2690.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Weinheimer S. P., McCann P. J., 3rd, O'Boyle D. R., 2nd, Stevens J. T., Boyd B. A., Drier D. A., Yamanaka G. A., DiIanni C. L., Deckman I. C., Cordingley M. G. Autoproteolysis of herpes simplex virus type 1 protease releases an active catalytic domain found in intermediate capsid particles. J Virol. 1993 Oct;67(10):5813–5822. doi: 10.1128/jvi.67.10.5813-5822.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Welch A. R., McNally L. M., Gibson W. Cytomegalovirus assembly protein nested gene family: four 3'-coterminal transcripts encode four in-frame, overlapping proteins. J Virol. 1991 Aug;65(8):4091–4100. doi: 10.1128/jvi.65.8.4091-4100.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Welch A. R., McNally L. M., Hall M. R., Gibson W. Herpesvirus proteinase: site-directed mutagenesis used to study maturational, release, and inactivation cleavage sites of precursor and to identify a possible catalytic site serine and histidine. J Virol. 1993 Dec;67(12):7360–7372. doi: 10.1128/jvi.67.12.7360-7372.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Welch A. R., Woods A. S., McNally L. M., Cotter R. J., Gibson W. A herpesvirus maturational proteinase, assemblin: identification of its gene, putative active site domain, and cleavage site. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10792–10796. doi: 10.1073/pnas.88.23.10792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Yamanaka G., DiIanni C. L., O'Boyle D. R., 2nd, Stevens J., Weinheimer S. P., Deckman I. C., Matusick-Kumar L., Colonno R. J. Stimulation of the herpes simplex virus type I protease by antichaeotrophic salts. J Biol Chem. 1995 Dec 15;270(50):30168–30172. doi: 10.1074/jbc.270.50.30168. [DOI] [PubMed] [Google Scholar]
  56. Zhou Z. H., Prasad B. V., Jakana J., Rixon F. J., Chiu W. Protein subunit structures in the herpes simplex virus A-capsid determined from 400 kV spot-scan electron cryomicroscopy. J Mol Biol. 1994 Sep 30;242(4):456–469. doi: 10.1006/jmbi.1994.1594. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES