Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Virology logoLink to Journal of Virology
. 1996 Nov;70(11):8109–8116. doi: 10.1128/jvi.70.11.8109-8116.1996

Parvovirus minute virus of mice strain i multiplication and pathogenesis in the newborn mouse brain are restricted to proliferative areas and to migratory cerebellar young neurons.

J C Ramírez 1, A Fairén 1, J M Almendral 1
PMCID: PMC190885  PMID: 8892936

Abstract

Newborn BALB/c mice intranasally inoculated at birth with a lethal dose of the immunosuppressive strain of the parvovirus minute virus of mice (MVMi) developed motor disabilities and intention tremors with a high incidence by the day 6 postinfection (dpi). These neurological syndromes paralleled the synthesis of virus intermediate DNA replicative forms and yield of infectious particles in the brain, with kinetics that peaked by this time. The preferred virus replicative sites in the brain were established early in the infection (2 dpi) and at the onset of clinical symptoms (6 dpi) and were compared with major regions of cellular proliferative activity found after intraperitoneal injection of bromodeoxyuridine 24 h before encephalons were subjected to immunohistochemistry detection. At 2 dpi, viral capsid antigen was located in the laterodorsal thalamic and the pontine nuclei but not in the extensive proliferative regions of the mouse brain at this postnatal day. At 6 dpi, however, the neurotropism of the MVMi was highlighted by its ability to target the subventricular zone of the ventricles, the subependymal zone of the olfactory bulb, and the dentate gyrus of the hippocampus, which are the three main germinal centers of the cerebrum in mouse postbirth neurogenesis. Unexpectedly, in the cerebellum, the MVMi capsid antigen was confined exclusively to cells that have undergone mitosis and have migrated to the internal granular layer (IGL) and not to the proliferative external granular layer (EGL), which was stained with antiproliferative cell nuclear antigen antibody and is the main target in other parvovirus infections. This result implies temporal or differentiation coupling between MVMi cycle and neuroblast morphogenesis, since proliferative granules of the EGL should primarily be infected but must migrate in a virus carrier state into the IGL in order to express the capsid proteins. During migration, many cells undergo destruction, accounting for the marked hypocellularity specifically found in the IGL and the irregular alignment of Purkinje cell bodies, both consistent histopathological hallmarks of animals developing cerebellar symptoms. We conclude that MVMi impairs postmitotic neuronal migration occurring in the first postnatal week, when, through the natural respiratory route of infection, the virus titer peaks in the encephalon. The results illustrate the intimate connection between MVMi neuropathogenesis and mouse brain morphogenetic stage, underscoring the potential of parvoviruses as markers of host developmental programs.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman J. Postnatal development of the cerebellar cortex in the rat. 3. Maturation of the components of the granular layer. J Comp Neurol. 1972 Aug;145(4):465–513. doi: 10.1002/cne.901450403. [DOI] [PubMed] [Google Scholar]
  2. Berns K. I. Parvovirus replication. Microbiol Rev. 1990 Sep;54(3):316–329. doi: 10.1128/mr.54.3.316-329.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonnard G. D., Manders E. K., Campbell D. A., Jr, Herberman R. B., Collins M. J., Jr Immunosuppressive activity of a subline of the mouse EL-4 lymphoma. Evidence for minute virus of mice causing the inhibition. J Exp Med. 1976 Jan 1;143(1):187–205. doi: 10.1084/jem.143.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown K. E., Anderson S. M., Young N. S. Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science. 1993 Oct 1;262(5130):114–117. doi: 10.1126/science.8211117. [DOI] [PubMed] [Google Scholar]
  5. Brownstein D. G., Smith A. L., Jacoby R. O., Johnson E. A., Hansen G., Tattersall P. Pathogenesis of infection with a virulent allotropic variant of minute virus of mice and regulation by host genotype. Lab Invest. 1991 Sep;65(3):357–364. [PubMed] [Google Scholar]
  6. Crawford L. V. A minute virus of mice. Virology. 1966 Aug;29(4):605–612. doi: 10.1016/0042-6822(66)90284-4. [DOI] [PubMed] [Google Scholar]
  7. Csiza C. K., De Lahunta A., Scott F. W., Gillespie J. H. Pathogenesis of Feline Panleukopenia Virus in Susceptible Newborn Kittens II. Pathology and Immunofluorescence. Infect Immun. 1971 Jun;3(6):838–846. doi: 10.1128/iai.3.6.838-846.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Engers H. D., Louis J. A., Zubler R. H., Hirt B. Inhibition of T cell-mediated functions by MVM(i), a parvovirus closely related to minute virus of mice. J Immunol. 1981 Dec;127(6):2280–2285. [PubMed] [Google Scholar]
  9. Fujita S. Quantitative analysis of cell proliferation and differentiation in the cortex of the postnatal mouse cerebellum. J Cell Biol. 1967 Feb;32(2):277–287. doi: 10.1083/jcb.32.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gaertner D. J., Jacoby R. O., Johnson E. A., Paturzo F. X., Smith A. L., Brandsma J. L. Characterization of acute rat parvovirus infection by in situ hybridization. Virus Res. 1993 Apr;28(1):1–18. doi: 10.1016/0168-1702(93)90085-2. [DOI] [PubMed] [Google Scholar]
  11. Gao W. Q., Hatten M. E. Neuronal differentiation rescued by implantation of Weaver granule cell precursors into wild-type cerebellar cortex. Science. 1993 Apr 16;260(5106):367–369. doi: 10.1126/science.8469990. [DOI] [PubMed] [Google Scholar]
  12. Jacoby R. O., Bhatt P. N., Gaertner D. J., Smith A. L., Johnson E. A. The pathogenesis of rat virus infection in infant and juvenile rats after oronasal inoculation. Arch Virol. 1987;95(3-4):251–270. doi: 10.1007/BF01310784. [DOI] [PubMed] [Google Scholar]
  13. Jacoby R. O., Johnson E. A., Ball-Goodrich L., Smith A. L., McKisic M. D. Characterization of mouse parvovirus infection by in situ hybridization. J Virol. 1995 Jun;69(6):3915–3919. doi: 10.1128/jvi.69.6.3915-3919.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson R. H., Margolis G., Kilham L. Identity of feline ataxia virus with feline panleucopenia virus. Nature. 1967 Apr 8;214(5084):175–177. doi: 10.1038/214175a0. [DOI] [PubMed] [Google Scholar]
  15. KILHAM L., MARGOLIS G. CEREBELLAR ATAXIA IN HAMSTERS INOCULATED WITH RAT VIRUS. Science. 1964 Mar 6;143(3610):1047–1048. doi: 10.1126/science.143.3610.1047. [DOI] [PubMed] [Google Scholar]
  16. KILHAM L., MARGOLIS G. CEREBELLAR DISEASE IN CATS INDUCED BY INOCULATION OF RAT VIRUS. Science. 1965 Apr 9;148(3667):244–246. doi: 10.1126/science.148.3667.244. [DOI] [PubMed] [Google Scholar]
  17. Kilham L., Margolis G. Fetal infections of hamsters, rats, and mice induced with the minute virus of mice (MVM). Teratology. 1971 Feb;4(1):43–61. doi: 10.1002/tera.1420040108. [DOI] [PubMed] [Google Scholar]
  18. Kilham L., Margolis G. Pathogenicity of minute virus of mice (MVM) for rats, mice, and hamsters. Proc Soc Exp Biol Med. 1970 Apr;133(4):1447–1452. doi: 10.3181/00379727-133-34710. [DOI] [PubMed] [Google Scholar]
  19. Kilham L., Margolis G. Problems of human concern arising from animal models of intrauterine and neonatal infections due to viruses: a review. I. Introduction and virologic studies. Prog Med Virol. 1975;20:113–143. [PubMed] [Google Scholar]
  20. Kilham L., Margolis G. Spontaneous hepatitis and cerebellar "hypoplasia" in suckling rats due to congenital infections with rat virus. Am J Pathol. 1966 Sep;49(3):457–475. [PMC free article] [PubMed] [Google Scholar]
  21. Kimsey P. B., Engers H. D., Hirt B., Jongeneel C. V. Pathogenicity of fibroblast- and lymphocyte-specific variants of minute virus of mice. J Virol. 1986 Jul;59(1):8–13. doi: 10.1128/jvi.59.1.8-13.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kuhar S. G., Feng L., Vidan S., Ross M. E., Hatten M. E., Heintz N. Changing patterns of gene expression define four stages of cerebellar granule neuron differentiation. Development. 1993 Jan;117(1):97–104. doi: 10.1242/dev.117.1.97. [DOI] [PubMed] [Google Scholar]
  23. Kurtzman G. J., Platanias L., Lustig L., Frickhofen N., Young N. S. Feline parvovirus propagates in cat bone marrow cultures and inhibits hematopoietic colony formation in vitro. Blood. 1989 Jul;74(1):71–81. [PubMed] [Google Scholar]
  24. Lois C., García-Verdugo J. M., Alvarez-Buylla A. Chain migration of neuronal precursors. Science. 1996 Feb 16;271(5251):978–981. doi: 10.1126/science.271.5251.978. [DOI] [PubMed] [Google Scholar]
  25. Luskin M. B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron. 1993 Jul;11(1):173–189. doi: 10.1016/0896-6273(93)90281-u. [DOI] [PubMed] [Google Scholar]
  26. Margolis G., Kilham L. Parvovirus infections, vascular endothelium, and hemorrhagic encephalopathy. Lab Invest. 1970 May;22(5):478–488. [PubMed] [Google Scholar]
  27. McKisic M. D., Lancki D. W., Otto G., Padrid P., Snook S., Cronin D. C., 2nd, Lohmar P. D., Wong T., Fitch F. W. Identification and propagation of a putative immunosuppressive orphan parvovirus in cloned T cells. J Immunol. 1993 Jan 15;150(2):419–428. [PubMed] [Google Scholar]
  28. McMaster G. K., Beard P., Engers H. D., Hirt B. Characterization of an immunosuppressive parvovirus related to the minute virus of mice. J Virol. 1981 Apr;38(1):317–326. doi: 10.1128/jvi.38.1.317-326.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miller R. A., Ward D. C., Ruddle F. H. Embryonal carcinoma cells (and their somatic cell hybrids) are resistant to infection by the murine parvovirus MVM, which does infect other teratocarcinoma-derived cell lines. J Cell Physiol. 1977 Jun;91(3):393–401. doi: 10.1002/jcp.1040910309. [DOI] [PubMed] [Google Scholar]
  30. Miyachi K., Fritzler M. J., Tan E. M. Autoantibody to a nuclear antigen in proliferating cells. J Immunol. 1978 Dec;121(6):2228–2234. [PubMed] [Google Scholar]
  31. Rakic P., Cameron R. S., Komuro H. Recognition, adhesion, transmembrane signaling and cell motility in guided neuronal migration. Curr Opin Neurobiol. 1994 Feb;4(1):63–69. doi: 10.1016/0959-4388(94)90033-7. [DOI] [PubMed] [Google Scholar]
  32. Rakic P., Sidman R. L. Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. Proc Natl Acad Sci U S A. 1973 Jan;70(1):240–244. doi: 10.1073/pnas.70.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ramírez J. C., Santarén J. F., Almendral J. M. Transcriptional inhibition of the parvovirus minute virus of mice by constitutive expression of an antisense RNA targeted against the NS-1 transactivator protein. Virology. 1995 Jan 10;206(1):57–68. doi: 10.1016/s0042-6822(95)80019-0. [DOI] [PubMed] [Google Scholar]
  34. Santarén J. F., Ramírez J. C., Almendral J. M. Protein species of the parvovirus minute virus of mice strain MVMp: involvement of phosphorylated VP-2 subtypes in viral morphogenesis. J Virol. 1993 Sep;67(9):5126–5138. doi: 10.1128/jvi.67.9.5126-5138.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Segovia J. C., Bueren J. A., Almendral J. M. Myeloid depression follows infection of susceptible newborn mice with the parvovirus minute virus of mice (strain i). J Virol. 1995 May;69(5):3229–3232. doi: 10.1128/jvi.69.5.3229-3232.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Segovia J. C., Real A., Bueren J. A., Almendral J. M. In vitro myelosuppressive effects of the parvovirus minute virus of mice (MVMi) on hematopoietic stem and committed progenitor cells. Blood. 1991 Mar 1;77(5):980–988. [PubMed] [Google Scholar]
  37. Siegl G., Bates R. C., Berns K. I., Carter B. J., Kelly D. C., Kurstak E., Tattersall P. Characteristics and taxonomy of Parvoviridae. Intervirology. 1985;23(2):61–73. doi: 10.1159/000149587. [DOI] [PubMed] [Google Scholar]
  38. Spalholz B. A., Tattersall P. Interaction of minute virus of mice with differentiated cells: strain-dependent target cell specificity is mediated by intracellular factors. J Virol. 1983 Jun;46(3):937–943. doi: 10.1128/jvi.46.3.937-943.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tattersall P. Replication of the parvovirus MVM. I. Dependence of virus multiplication and plaque formation on cell growth. J Virol. 1972 Oct;10(4):586–590. doi: 10.1128/jvi.10.4.586-590.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tennant R. W., Layman K. R., Hand R. E. Effect of cell physiological state on infection by rat virus. J Virol. 1969 Dec;4(6):872–878. doi: 10.1128/jvi.4.6.872-878.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Török T. J. Parvovirus B19 and human disease. Adv Intern Med. 1992;37:431–455. [PubMed] [Google Scholar]
  42. Zheng C., Heintz N., Hatten M. E. CNS gene encoding astrotactin, which supports neuronal migration along glial fibers. Science. 1996 Apr 19;272(5260):417–419. doi: 10.1126/science.272.5260.417. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES