Abstract
A major impediment to successful implementation of gene therapy for treatment of muscular dystrophy is the restricted infectivity of mature muscle fibers with viral vectors. This phenomenon has been observed with adenovirus vectors and more recently with herpes simplex virus type 1 (HSV-1)-based vectors. Here we report findings of morphological studies designed to experimentally determine the mechanism underlying the rapid reduction in vector-mediated gene delivery concomitant with the maturation of muscle fibers. Using immunohistochemistry and confocal microscopy, we have colocalized HSV-1 and collagen IV, a major component of the basal lamina, in HSV-1-injected muscles and determined that the virus penetrates and expresses a transgene (lacZ) in muscle fibers of newborn animals but cannot efficiently penetrate adult myofibers. This was observed in normal as well as in immunocompromised animals, suggesting that the lack of adult myofiber transduction is not a result of an immune response and clearance of the viral vector. Since heparan sulfate proteoglycan, the initial attachment receptor for HSV-1, was shown to be preserved during the maturation of the myofibers by immunofluorescence assay and HSV-1 was able to infect isolated, viable myofibers in vitro, we suggest that the low-level HSV-1 transduction of mature myofibers is not a consequence of the loss of viral attachment sites on the surfaces of mature muscle fibers. Rather, our results indicate that the mature basal lamina acts as a physical barrier to HSV-1 infection of adult myofibers. This conclusion was further supported by the finding that HSV-1 displayed an intermediate level of transduction in mature dy/dy muscle which is defective for normal basal lamina formation. Together, these experiments suggest that efficient HSV vector transduction in mature skeletal muscle requires methods to permeabilize the basal lamina.
Full Text
The Full Text of this article is available as a PDF (835.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acsadi G., Jani A., Huard J., Blaschuk K., Massie B., Holland P., Lochmüller H., Karpati G. Cultured human myoblasts and myotubes show markedly different transducibility by replication-defective adenovirus recombinants. Gene Ther. 1994 Sep;1(5):338–340. [PubMed] [Google Scholar]
- Acsadi G., Jani A., Massie B., Simoneau M., Holland P., Blaschuk K., Karpati G. A differential efficiency of adenovirus-mediated in vivo gene transfer into skeletal muscle cells of different maturity. Hum Mol Genet. 1994 Apr;3(4):579–584. doi: 10.1093/hmg/3.4.579. [DOI] [PubMed] [Google Scholar]
- Acsadi G., Lochmüller H., Jani A., Huard J., Massie B., Prescott S., Simoneau M., Petrof B. J., Karpati G. Dystrophin expression in muscles of mdx mice after adenovirus-mediated in vivo gene transfer. Hum Gene Ther. 1996 Jan 20;7(2):129–140. doi: 10.1089/hum.1996.7.2-129. [DOI] [PubMed] [Google Scholar]
- Arahata K., Ishiura S., Ishiguro T., Tsukahara T., Suhara Y., Eguchi C., Ishihara T., Nonaka I., Ozawa E., Sugita H. Immunostaining of skeletal and cardiac muscle surface membrane with antibody against Duchenne muscular dystrophy peptide. Nature. 1988 Jun 30;333(6176):861–863. doi: 10.1038/333861a0. [DOI] [PubMed] [Google Scholar]
- Burrage T. G., Lentz T. L. Ultrastructural characterization of surface specializations containing high-density acetylcholine receptors on embryonic chick myotubes in vivo and in vitro. Dev Biol. 1981 Jul 30;85(2):267–286. doi: 10.1016/0012-1606(81)90259-1. [DOI] [PubMed] [Google Scholar]
- Chiu A. Y., Sanes J. R. Development of basal lamina in synaptic and extrasynaptic portions of embryonic rat muscle. Dev Biol. 1984 Jun;103(2):456–467. doi: 10.1016/0012-1606(84)90333-6. [DOI] [PubMed] [Google Scholar]
- DeLuca N. A., McCarthy A. M., Schaffer P. A. Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J Virol. 1985 Nov;56(2):558–570. doi: 10.1128/jvi.56.2.558-570.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunckley M. G., Love D. R., Davies K. E., Walsh F. S., Morris G. E., Dickson G. Retroviral-mediated transfer of a dystrophin minigene into mdx mouse myoblasts in vitro. FEBS Lett. 1992 Jan 20;296(2):128–134. doi: 10.1016/0014-5793(92)80363-l. [DOI] [PubMed] [Google Scholar]
- Hoffman E. P., Brown R. H., Jr, Kunkel L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987 Dec 24;51(6):919–928. doi: 10.1016/0092-8674(87)90579-4. [DOI] [PubMed] [Google Scholar]
- Huard J., Lochmüller H., Acsadi G., Jani A., Holland P., Guérin C., Massie B., Karpati G. Differential short-term transduction efficiency of adult versus newborn mouse tissues by adenoviral recombinants. Exp Mol Pathol. 1995 Apr;62(2):131–143. doi: 10.1006/exmp.1995.1015. [DOI] [PubMed] [Google Scholar]
- Huard J., Lochmüller H., Acsadi G., Jani A., Massie B., Karpati G. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther. 1995 Mar;2(2):107–115. [PubMed] [Google Scholar]
- Miller J. B., Boyce F. M. Gene therapy by and for muscle cells. Trends Genet. 1995 May;11(5):163–165. doi: 10.1016/s0168-9525(00)89032-0. [DOI] [PubMed] [Google Scholar]
- Quantin B., Perricaudet L. D., Tajbakhsh S., Mandel J. L. Adenovirus as an expression vector in muscle cells in vivo. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2581–2584. doi: 10.1073/pnas.89.7.2581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ragot T., Vincent N., Chafey P., Vigne E., Gilgenkrantz H., Couton D., Cartaud J., Briand P., Kaplan J. C., Perricaudet M. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature. 1993 Feb 18;361(6413):647–650. doi: 10.1038/361647a0. [DOI] [PubMed] [Google Scholar]
- Rojas C. V., Hoffman E. P. Recent advances in dystrophin research. Curr Opin Neurobiol. 1991 Oct;1(3):420–429. doi: 10.1016/0959-4388(91)90064-e. [DOI] [PubMed] [Google Scholar]
- Rosenblatt J. D., Lunt A. I., Parry D. J., Partridge T. A. Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim. 1995 Nov;31(10):773–779. doi: 10.1007/BF02634119. [DOI] [PubMed] [Google Scholar]
- Shieh M. T., WuDunn D., Montgomery R. I., Esko J. D., Spear P. G. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Cell Biol. 1992 Mar;116(5):1273–1281. doi: 10.1083/jcb.116.5.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sunada Y., Bernier S. M., Kozak C. A., Yamada Y., Campbell K. P. Deficiency of merosin in dystrophic dy mice and genetic linkage of laminin M chain gene to dy locus. J Biol Chem. 1994 May 13;269(19):13729–13732. [PubMed] [Google Scholar]
- Vincent N., Ragot T., Gilgenkrantz H., Couton D., Chafey P., Grégoire A., Briand P., Kaplan J. C., Kahn A., Perricaudet M. Long-term correction of mouse dystrophic degeneration by adenovirus-mediated transfer of a minidystrophin gene. Nat Genet. 1993 Oct;5(2):130–134. doi: 10.1038/ng1093-130. [DOI] [PubMed] [Google Scholar]
- Watkins S. C., Hoffman E. P., Slayter H. S., Kunkel L. M. Immunoelectron microscopic localization of dystrophin in myofibres. Nature. 1988 Jun 30;333(6176):863–866. doi: 10.1038/333863a0. [DOI] [PubMed] [Google Scholar]
- Xu H., Christmas P., Wu X. R., Wewer U. M., Engvall E. Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5572–5576. doi: 10.1073/pnas.91.12.5572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu H., Wu X. R., Wewer U. M., Engvall E. Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene. Nat Genet. 1994 Nov;8(3):297–302. doi: 10.1038/ng1194-297. [DOI] [PubMed] [Google Scholar]