Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Dec;104(4):907–913. doi: 10.1111/j.1476-5381.1991.tb12525.x

Cromakalim (BRL 34915) counteracts the epileptiform activity elicited by diltiazem and verapamil in rats.

P Popoli 1, A Pezzola 1, S Sagratella 1, Y C Zeng 1, A Scotti de Carolis 1
PMCID: PMC1908861  PMID: 1667291

Abstract

1. The effects of BRL 34915 (cromakalim), a potassium channel opener, have been tested on the epileptiform activity elicited by high dose/concentrations of some calcium antagonists in in vivo (diltiazem) and in vitro (diltiazem and verapamil) experiments in rats. 2. Diltiazem (150-300 mg kg-1, i.p.) induced behavioural and electroencephalographic (EEG) seizures that were completely prevented by cromakalim (10 nmol/10 microliters, i.c.v.). Whereas, pentobarbitone (5-10 mg kg-1, i.p.) only prevented the behavioural component of the seizures. 3. In hippocampal slices, verapamil (1.5-2.0 mM) produced, within 30-60 min of perfusion, a CA1 epileptiform bursting in 80% of the experiments. This epileptiform activity was prevented by the cromakalim concentration (50 microM) that did not affect the control CA1 synaptic transmission per se. Pentobarbitone also prevented verapamil-induced epileptiform bursting only at the concentration (100 microM) that also reduced control CA1 synaptic transmission. 4. Diltiazem (1.5 mM) produced a biphasic excitatory-depressant effect within 60 min of perfusion. A CA1 epileptiform bursting appeared in 100% of the experiments within 30 min of perfusion. These excitatory effects were followed by a depression phase, characterized by a reduction of the magnitude of CA1 excitatory postsynaptic potentials (e.p.s.ps) and population spike. 5. The diltiazem-induced epileptiform bursting was prevented by cromakalim at a concentration (50 microM) that did not affect the control CA1 synaptic transmission per se. Pentobarbitone also prevented the diltiazem-induced epileptiform bursting only at a concentration (100 microM) that also reduced the control CA1 synaptic transmission. Both cromakalim (50 microM) and pentobarbitone (100 microM) failed to affect the depressant effects of diltiazem on CA1 hippocampal area.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
907

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alger B. E., Nicoll R. A. Epileptiform burst afterhyperolarization: calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science. 1980 Dec 5;210(4474):1122–1124. doi: 10.1126/science.7444438. [DOI] [PubMed] [Google Scholar]
  2. De Sarro G. B., Meldrum B. S., Nisticó G. Anticonvulsant effects of some calcium entry blockers in DBA/2 mice. Br J Pharmacol. 1988 Feb;93(2):247–256. doi: 10.1111/j.1476-5381.1988.tb11428.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dolin S. J., Hunter A. B., Halsey M. J., Little H. J. Anticonvulsant profile of the dihydropyridine calcium channel antagonists, nitrendipine and nimodipine. Eur J Pharmacol. 1988 Jul 26;152(1-2):19–27. doi: 10.1016/0014-2999(88)90831-x. [DOI] [PubMed] [Google Scholar]
  4. Dutar P., Rascol O., Lamour Y. Omega-conotoxin GVIA blocks synaptic transmission in the CA1 field of the hippocampus. Eur J Pharmacol. 1989 Dec 19;174(2-3):261–266. doi: 10.1016/0014-2999(89)90318-x. [DOI] [PubMed] [Google Scholar]
  5. Erdreich A., Spanier R., Rahamimoff H. The inhibition of Na-dependent Ca uptake by verapamil in synaptic plasma membrane vesicles. Eur J Pharmacol. 1983 Jun 3;90(2-3):193–202. doi: 10.1016/0014-2999(83)90237-6. [DOI] [PubMed] [Google Scholar]
  6. Fragoso-Veloz J., Massieu L., Alvarado R., Tapia R. Seizures and wet-dog shakes induced by 4-aminopyridine, and their potentiation by nifedipine. Eur J Pharmacol. 1990 Mar 27;178(3):275–284. doi: 10.1016/0014-2999(90)90106-g. [DOI] [PubMed] [Google Scholar]
  7. Frank C., Zeng Y. C., Sagratella S., Scotti de Carolis A. Aminoglycoside antibiotics affect hippocampal LTP: a comparative study with the N-type calcium antagonist omega-conotoxin-GVIA. Life Sci. 1991;48(16):1575–1583. doi: 10.1016/0024-3205(91)90282-g. [DOI] [PubMed] [Google Scholar]
  8. Gage P. W., Robertson B. Prolongation of inhibitory postsynaptic currents by pentobarbitone, halothane and ketamine in CA1 pyramidal cells in rat hippocampus. Br J Pharmacol. 1985 Jul;85(3):675–681. doi: 10.1111/j.1476-5381.1985.tb10563.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hadley R. W., Hume J. R. Actions of phencyclidine on the action potential and membrane currents of single guinea-pig myocytes. J Pharmacol Exp Ther. 1986 Apr;237(1):131–136. [PubMed] [Google Scholar]
  10. Heinemann U., Stabel J., Rausche G. Activity-dependent ionic changes and neuronal plasticity in rat hippocampus. Prog Brain Res. 1990;83:197–214. doi: 10.1016/s0079-6123(08)61250-9. [DOI] [PubMed] [Google Scholar]
  11. Hotson J. R., Prince D. A. A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. J Neurophysiol. 1980 Feb;43(2):409–419. doi: 10.1152/jn.1980.43.2.409. [DOI] [PubMed] [Google Scholar]
  12. Jones R. S., Heinemann U. H. Differential effects of calcium entry blockers on pre- and postsynaptic influx of calcium in the rat hippocampus in vitro. Brain Res. 1987 Jul 28;416(2):257–266. doi: 10.1016/0006-8993(87)90905-x. [DOI] [PubMed] [Google Scholar]
  13. Jones R. S., Heinemann U. Abolition of the orthodromically evoked IPSP of CA1 pyramidal cells before the EPSP during washout of calcium from hippocampal slices. Exp Brain Res. 1987;65(3):676–680. doi: 10.1007/BF00235992. [DOI] [PubMed] [Google Scholar]
  14. Kass R. S., Tsien R. W. Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers. J Gen Physiol. 1975 Aug;66(2):169–192. doi: 10.1085/jgp.66.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lückhoff A., Busse R. Activators of potassium channels enhance calcium influx into endothelial cells as a consequence of potassium currents. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jul;342(1):94–99. doi: 10.1007/BF00178979. [DOI] [PubMed] [Google Scholar]
  16. McLaughlin S. G., Szabo G., Eisenman G. Divalent ions and the surface potential of charged phospholipid membranes. J Gen Physiol. 1971 Dec;58(6):667–687. doi: 10.1085/jgp.58.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miller R. J. Multiple calcium channels and neuronal function. Science. 1987 Jan 2;235(4784):46–52. doi: 10.1126/science.2432656. [DOI] [PubMed] [Google Scholar]
  18. Morocutti C., Pierelli F., Sanarelli L., Stefano E., Peppe A., Mattioli G. L. Antiepileptic effects of a calcium antagonist (nimodipine) on cefazolin-induced epileptogenic foci in rabbits. Epilepsia. 1986 Sep-Oct;27(5):498–503. doi: 10.1111/j.1528-1157.1986.tb03574.x. [DOI] [PubMed] [Google Scholar]
  19. Naito K., Nagao T., Otsuka M., Harigaya S., Nakajima H. Penetration into and elimination from the cerebrospinal fluid of diltiazem, a calcium antagonist, in anesthetized rabbits. Arzneimittelforschung. 1986;36(1):25–28. [PubMed] [Google Scholar]
  20. Nicholson C., Hounsgaard J. Diffusion in the slice microenvironment and implications for physiological studies. Fed Proc. 1983 Sep;42(12):2865–2868. [PubMed] [Google Scholar]
  21. Ots M. E., Yaksh T. L., Anderson R. E., Sundt T. M., Jr Effect of dihydropyridines and diphenylalkylamines on pentylenetetrazol-induced seizures and cerebral blood flow in cats. J Neurosurg. 1987 Sep;67(3):406–413. doi: 10.3171/jns.1987.67.3.0406. [DOI] [PubMed] [Google Scholar]
  22. Popoli P., Benedetti M., Scotti de Carolis A. Influence of nimodipine and diltiazem, alone and in combination, on phencyclidine-induced effects in rats: an EEG and behavioural study. Eur J Pharmacol. 1990 Nov 27;191(2):141–148. doi: 10.1016/0014-2999(90)94141-j. [DOI] [PubMed] [Google Scholar]
  23. Popoli P., Pèzzola A., Scotti de Carolis A. Effects of calcium antagonist nimodipine on pentylenetetrazole-induced seizures in rats and rabbits. Arch Int Pharmacodyn Ther. 1988 Mar-Apr;292:58–67. [PubMed] [Google Scholar]
  24. Sagratella S., Proietti M. L., Frank C., de Carolis A. S. Effects of some calcium antagonists and of calcium concentration changes on CA1 paired pulse inhibition in rat hippocampal slices. Gen Pharmacol. 1991;22(2):227–230. doi: 10.1016/0306-3623(91)90437-b. [DOI] [PubMed] [Google Scholar]
  25. Stringer J. L., Lothman E. W. In vitro effects of extracellular calcium concentrations on hippocampal pyramidal cell responses. Exp Neurol. 1988 Jul;101(1):132–146. doi: 10.1016/0014-4886(88)90070-2. [DOI] [PubMed] [Google Scholar]
  26. Thayer S. A., Welcome M., Chhabra A., Fairhurst A. S. Effects of dihydropyridine calcium channel blocking drugs on rat brain muscarinic and alpha-adrenergic receptors. Biochem Pharmacol. 1985 Jan 15;34(2):175–180. doi: 10.1016/0006-2952(85)90121-2. [DOI] [PubMed] [Google Scholar]
  27. Vezzani A., Wu H. Q., Stasi M. A., Angelico P., Samanin R. Effect of various calcium channel blockers on three different models of limbic seizures in rats. Neuropharmacology. 1988 May;27(5):451–458. doi: 10.1016/0028-3908(88)90126-8. [DOI] [PubMed] [Google Scholar]
  28. Walden J., Speckmann E. J., Witte O. W. Suppression of focal epileptiform discharges by intraventricular perfusion of a calcium antagonist. Electroencephalogr Clin Neurophysiol. 1985 Oct;61(4):299–309. doi: 10.1016/0013-4694(85)91096-x. [DOI] [PubMed] [Google Scholar]
  29. Wong R. K., Prince D. A. Participation of calcium spikes during intrinsic burst firing in hippocampal neurons. Brain Res. 1978 Dec 29;159(2):385–390. doi: 10.1016/0006-8993(78)90544-9. [DOI] [PubMed] [Google Scholar]
  30. Yaari Y., Hamon B., Lux H. D. Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science. 1987 Feb 6;235(4789):680–682. doi: 10.1126/science.2433765. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES