Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Aug;115(8):1493–1501. doi: 10.1111/j.1476-5381.1995.tb16642.x

Effect of KC399, a newly synthesized K+ channel opener, on acetylcholine-induced electrical and mechanical activities in rabbit tracheal smooth muscle.

K Kamei 1, H Nabata 1, H Kuriyama 1, Y Watanabe 1, T Itoh 1
PMCID: PMC1908865  PMID: 8564210

Abstract

1. Effects of KC399, an opener of ATP-sensitive K+ channels were investigated on membrane potential, isometric force and intracellular Ca2+ ([Ca2+]i) mobilization induced by acetylcholine (ACh) in smooth muscle from the rabbit trachea. 2. In these smooth muscle cells, ACh (0.1 and 1 microM) depolarized the membrane in a concentration-dependent manner, KC399 (1-100 nM) hyperpolarized the membrane whether in the presence or absence of ACh. When the concentration of ACh was increased, the absolute values of the membrane potential induced by the maximum concentration of KC399 were less negative. 3. ACh (0.1 to 10 microM) concentration-dependently produced a phasic, followed by a tonic increase in both [Ca2+]i and force. KC399 (above 3 nM) lowered the resting [Ca2+]i and attenuated the ACh-induced phasic and tonic increases in [Ca2+]i and force, in a concentration-dependent manner. The magnitude of the inhibition was greater for the ACh-induced tonic responses than for the phasic ones. Nicardipine (0.3 microM), a blocker of the L-type Ca2+ channel, attenuated the ACh-induced tonic, but not phasic, increases in [Ca2+]i and force. KC399 further attenuated the ACh-induced tonic responses in the presence of nicardipine. 4. In beta-escin-skinned strips, Ca2+ (0.3-10 microM) produced a contraction in a concentration-dependent manner. KC399 (0.1 microM) had no effect on the Ca(2+)-force relationship in the presence or absence of ATP with GTP. However, at a very high concentration (1 microM), this agent slightly shifted the relationship to the right and attenuated the maximum Ca(2+)-induced contraction.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1493

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker P. L., Singer J. J., Walsh J. V., Jr, Fay F. S. Regulation of calcium concentration in voltage-clamped smooth muscle cells. Science. 1989 Apr 14;244(4901):211–214. doi: 10.1126/science.2704996. [DOI] [PubMed] [Google Scholar]
  2. Benham C. D., Tsien R. W. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature. 1987 Jul 16;328(6127):275–278. doi: 10.1038/328275a0. [DOI] [PubMed] [Google Scholar]
  3. Black J. L., Armour C. L., Johnson P. R., Alouan L. A., Barnes P. J. The action of a potassium channel activator, BRL 38227 (lemakalim), on human airway smooth muscle. Am Rev Respir Dis. 1990 Dec;142(6 Pt 1):1384–1389. doi: 10.1164/ajrccm/142.6_Pt_1.1384. [DOI] [PubMed] [Google Scholar]
  4. Bonev A. D., Nelson M. T. Muscarinic inhibition of ATP-sensitive K+ channels by protein kinase C in urinary bladder smooth muscle. Am J Physiol. 1993 Dec;265(6 Pt 1):C1723–C1728. doi: 10.1152/ajpcell.1993.265.6.C1723. [DOI] [PubMed] [Google Scholar]
  5. Chilvers E. R., Batty I. H., Barnes P. J., Nahorski S. R. Formation of inositol polyphosphates in airway smooth muscle after muscarinic receptor stimulation. J Pharmacol Exp Ther. 1990 Feb;252(2):786–791. [PubMed] [Google Scholar]
  6. Cook N. S. The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol Sci. 1988 Jan;9(1):21–28. doi: 10.1016/0165-6147(88)90238-6. [DOI] [PubMed] [Google Scholar]
  7. Edwards G., Weston A. H. The pharmacology of ATP-sensitive potassium channels. Annu Rev Pharmacol Toxicol. 1993;33:597–637. doi: 10.1146/annurev.pa.33.040193.003121. [DOI] [PubMed] [Google Scholar]
  8. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  9. Imagawa J., Yoshida S., Koga T., Kamei K., Nabata H. The effect of a novel benzopyran derivative, KC 399, on the isolated guinea-pig trachealis and human bronchi. Gen Pharmacol. 1993 Nov;24(6):1505–1512. doi: 10.1016/0306-3623(93)90444-3. [DOI] [PubMed] [Google Scholar]
  10. Inoue R., Isenberg G. Effect of membrane potential on acetylcholine-induced inward current in guinea-pig ileum. J Physiol. 1990 May;424:57–71. doi: 10.1113/jphysiol.1990.sp018055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ito S., Kajikuri J., Itoh T., Kuriyama H. Effects of lemakalim on changes in Ca2+ concentration and mechanical activity induced by noradrenaline in the rabbit mesenteric artery. Br J Pharmacol. 1991 Sep;104(1):227–233. doi: 10.1111/j.1476-5381.1991.tb12411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Itoh T., Kanmura Y., Kuriyama H. Inorganic phosphate regulates the contraction-relaxation cycle in skinned muscles of the rabbit mesenteric artery. J Physiol. 1986 Jul;376:231–252. doi: 10.1113/jphysiol.1986.sp016151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Itoh T., Kanmura Y., Kuriyama H., Suzuki H. Nisoldipine-induced relaxation in intact and skinned smooth muscles of rabbit coronary arteries. Br J Pharmacol. 1984 Sep;83(1):243–258. doi: 10.1111/j.1476-5381.1984.tb10141.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Itoh T., Seki N., Suzuki S., Ito S., Kajikuri J., Kuriyama H. Membrane hyperpolarization inhibits agonist-induced synthesis of inositol 1,4,5-trisphosphate in rabbit mesenteric artery. J Physiol. 1992;451:307–328. doi: 10.1113/jphysiol.1992.sp019166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Itoh T., Suzuki S., Suzuki A., Nakamura F., Naka M., Tanaka T. Effects of exogenously applied calponin on Ca(2+)-regulated force in skinned smooth muscle of the rabbit mesenteric artery. Pflugers Arch. 1994 Jun;427(3-4):301–308. doi: 10.1007/BF00374538. [DOI] [PubMed] [Google Scholar]
  16. Janssen L. J., Daniel E. E. Depolarizing agents induce oscillations in canine bronchial smooth muscle membrane potential: possible mechanisms. J Pharmacol Exp Ther. 1991 Oct;259(1):110–117. [PubMed] [Google Scholar]
  17. Kamei K., Nabata H., Kuriyama H. Effects of KC 399, a novel ATP-sensitive K+ channel opener, on electrical and mechanical responses in dog tracheal smooth muscle. J Pharmacol Exp Ther. 1994 Jan;268(1):319–327. [PubMed] [Google Scholar]
  18. Katsuyama H., Suzuki S., Nishiye E. Actions of second messengers synthesized by various spasmogenic agents and their relation to mechanical responses in dog tracheal smooth muscle. Br J Pharmacol. 1990 May;100(1):41–48. doi: 10.1111/j.1476-5381.1990.tb12049.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Okada Y., Yanagisawa T., Taira N. BRL 38227 (levcromakalim)-induced hyperpolarization reduces the sensitivity to Ca2+ of contractile elements in canine coronary artery. Naunyn Schmiedebergs Arch Pharmacol. 1993 Apr;347(4):438–444. doi: 10.1007/BF00165396. [DOI] [PubMed] [Google Scholar]
  20. Pacaud P., Bolton T. B. Relation between muscarinic receptor cationic current and internal calcium in guinea-pig jejunal smooth muscle cells. J Physiol. 1991 Sep;441:477–499. doi: 10.1113/jphysiol.1991.sp018763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Quast U. Potassium channel openers: pharmacological and clinical aspects. Fundam Clin Pharmacol. 1992;6(7):279–293. doi: 10.1111/j.1472-8206.1992.tb00122.x. [DOI] [PubMed] [Google Scholar]
  22. Saunders H. H., Farley J. M. Pharmacological properties of potassium currents in swine tracheal smooth muscle. J Pharmacol Exp Ther. 1992 Mar;260(3):1038–1044. [PubMed] [Google Scholar]
  23. Small R. C., Berry J. L., Burka J. F., Cook S. J., Foster R. W., Green K. A., Murray M. A. Potassium channel activators and bronchial asthma. Clin Exp Allergy. 1992 Jan;22(1):11–18. doi: 10.1111/j.1365-2222.1992.tb00109.x. [DOI] [PubMed] [Google Scholar]
  24. Standen N. B., Quayle J. M., Davies N. W., Brayden J. E., Huang Y., Nelson M. T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science. 1989 Jul 14;245(4914):177–180. doi: 10.1126/science.2501869. [DOI] [PubMed] [Google Scholar]
  25. Taylor S. G., Arch J. R., Bond J., Buckle D. R., Shaw D. J., Taylor J. F., Ward J. S. The inhibitory effects of cromakalim and its active enantiomer BRL 38227 against various agonists in guinea pig and human airways: comparison with pinacidil and verapamil. J Pharmacol Exp Ther. 1992 May;261(2):429–437. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES