Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Aug;115(8):1463–1468. doi: 10.1111/j.1476-5381.1995.tb16638.x

The mechanism of action of alpha 2-adrenoceptors in human isolated subcutaneous resistance arteries.

N A Parkinson 1, A D Hughes 1
PMCID: PMC1908876  PMID: 8564206

Abstract

1. The effect of noradrenaline and the selective alpha 2-adrenoceptor agonist, azepexole, on tone and intracellular Ca2+ ([Ca2+]i) was examined in human isolated subcutaneous resistance arteries. Isolated arteries were mounted on an isometric myograph and loaded with the Ca2+ indicator, fura-2, for simultaneous measurement of force and [Ca2+]i. 2. High potassium solution (KPSS), noradrenaline and azepexole increased [Ca2+]i and contracted subcutaneous arteries in physiological saline. When extracellular Ca2+ was removed and the calcium chelator, BAPTA, added to the physiological saline (PSSo), responses to noradrenaline were transient and reduced, and responses to azepexole were markedly inhibited. 3. Ryanodine, an agent which interferes with Ca2+ release from intracellular stores, had little effect on contractile responses to KPSS, noradrenaline or azepexole in physiological saline. The response to caffeine in physiological saline was inhibited by ryanodine. In PSSo, ryanodine partially inhibited contractile responses to noradrenaline and azepexole, and completely abolished the response to caffeine. 4. Noradrenaline and azepexole both significantly increased maximum force achieved by cumulative addition of Ca2+ to a Ca(2+)-free depolarizing solution and shifted the calculated relationship between [Ca2+]i and force to the left, suggesting these agents increase the sensitivity of the contractile apparatus to [Ca2+]i. 5. (-)-202 791, a dihydropyridine antagonist of voltage-operated calcium channels partially inhibited both the contractile response and the rise in [Ca2+]i induced by azepexole. Pre-treatment of arteries with pertussis toxin inhibited responses to azepexole, but had no significant effect on tone induced by KPSS or noradrenaline.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1463

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aalkjaer C., Pedersen E. B., Danielsen H., Fjeldborg O., Jespersen B., Kjaer T., Sørensen S. S., Mulvany M. J. Morphological and functional characteristics of isolated resistance vessels in advanced uraemia. Clin Sci (Lond) 1986 Dec;71(6):657–663. doi: 10.1042/cs0710657. [DOI] [PubMed] [Google Scholar]
  2. Aburto T. K., Lajoie C., Morgan K. G. Mechanisms of signal transduction during alpha 2-adrenergic receptor-mediated contraction of vascular smooth muscle. Circ Res. 1993 Apr;72(4):778–785. doi: 10.1161/01.res.72.4.778. [DOI] [PubMed] [Google Scholar]
  3. Byrne N. G., Large W. A. Membrane ionic mechanisms activated by noradrenaline in cells isolated from the rabbit portal vein. J Physiol. 1988 Oct;404:557–573. doi: 10.1113/jphysiol.1988.sp017306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheung D. W. An electrophysiological study of alpha-adrenoceptor mediated excitation-contraction coupling in the smooth muscle cells of the rat saphenous vein. Br J Pharmacol. 1985 Jan;84(1):265–271. [PMC free article] [PubMed] [Google Scholar]
  5. Cole W. C., Sanders K. M. G proteins mediate suppression of Ca2+-activated K current by acetylcholine in smooth muscle cells. Am J Physiol. 1989 Sep;257(3 Pt 1):C596–C600. doi: 10.1152/ajpcell.1989.257.3.C596. [DOI] [PubMed] [Google Scholar]
  6. Daly C. J., Dunn W. R., McGrath J. C., Miller D. J., Wilson V. G. An examination of the sources of calcium for contractions mediated by postjunctional alpha 1- and alpha 2-adrenoceptors in several blood vessels isolated from the rabbit. Br J Pharmacol. 1990 Feb;99(2):253–260. doi: 10.1111/j.1476-5381.1990.tb14690.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehrlich B. E., Watras J. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature. 1988 Dec 8;336(6199):583–586. doi: 10.1038/336583a0. [DOI] [PubMed] [Google Scholar]
  8. Elliott H. L., Reid J. L. Evidence for postjunctional vascular alpha 2-adrenoceptors in peripheral vascular regulation in man. Clin Sci (Lond) 1983 Sep;65(3):237–241. doi: 10.1042/cs0650237. [DOI] [PubMed] [Google Scholar]
  9. Faber J. E. In situ analysis of alpha-adrenoceptors on arteriolar and venular smooth muscle in rat skeletal muscle microcirculation. Circ Res. 1988 Jan;62(1):37–50. doi: 10.1161/01.res.62.1.37. [DOI] [PubMed] [Google Scholar]
  10. Fraser C. M. Molecular biology of adrenergic receptors: model systems for the study of G-protein-mediated signal transduction. Blood Vessels. 1991;28(1-3):93–103. doi: 10.1159/000158848. [DOI] [PubMed] [Google Scholar]
  11. Garcha R. S., Hughes A. D. Action of heparin and ruthenium red on responses of reversibly-permeabilised rat mesenteric arteries. Eur J Pharmacol. 1994 Aug 16;268(3):319–325. doi: 10.1016/0922-4106(94)90056-6. [DOI] [PubMed] [Google Scholar]
  12. Garcha R. S., Hughes A. D. Inhibition of norepinephrine and caffeine-induced activation by ryanodine and thapsigargin in rat mesenteric arteries. J Cardiovasc Pharmacol. 1995 May;25(5):840–846. doi: 10.1097/00005344-199505000-00022. [DOI] [PubMed] [Google Scholar]
  13. Garcha R., Schachter M., Hughes A., Thom S. M., Sever P. Amlodipine inhibition of alpha-agonist induced contraction in human resistance vessels. J Hypertens Suppl. 1991 Dec;9(6):S368–S369. [PubMed] [Google Scholar]
  14. Gong M. C., Fuglsang A., Alessi D., Kobayashi S., Cohen P., Somlyo A. V., Somlyo A. P. Arachidonic acid inhibits myosin light chain phosphatase and sensitizes smooth muscle to calcium. J Biol Chem. 1992 Oct 25;267(30):21492–21498. [PubMed] [Google Scholar]
  15. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  16. Gu H., Trajkovic S., LaBelle E. F. Norepinephrine-induced phosphatidylcholine hydrolysis by phospholipases D and C in rat tail artery. Am J Physiol. 1992 Jun;262(6 Pt 1):C1376–C1383. doi: 10.1152/ajpcell.1992.262.6.C1376. [DOI] [PubMed] [Google Scholar]
  17. Hashimoto T., Hirata M., Itoh T., Kanmura Y., Kuriyama H. Inositol 1,4,5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery. J Physiol. 1986 Jan;370:605–618. doi: 10.1113/jphysiol.1986.sp015953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hering S., Hughes A. D., Timin E. N., Bolton T. B. Modulation of calcium channels in arterial smooth muscle cells by dihydropyridine enantiomers. J Gen Physiol. 1993 Mar;101(3):393–410. doi: 10.1085/jgp.101.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Himpens B., Kitazawa T., Somlyo A. P. Agonist-dependent modulation of Ca2+ sensitivity in rabbit pulmonary artery smooth muscle. Pflugers Arch. 1990 Sep;417(1):21–28. doi: 10.1007/BF00370764. [DOI] [PubMed] [Google Scholar]
  20. Ito Y., Kozawa O., Tokuda H., Kotoyori J., Oiso Y. Vasopressin induces arachidonic acid release through pertussis toxin-sensitive GTP-binding protein in aortic smooth muscle cells: independence from phosphoinositide hydrolysis. J Cell Biochem. 1993 Oct;53(2):169–175. doi: 10.1002/jcb.240530210. [DOI] [PubMed] [Google Scholar]
  21. Jancar S., Schulz R., Krueger C., Cook D. A. Mechanisms of arachidonic acid-induced contractions of canine cerebral arteries. Eur J Pharmacol. 1987 Apr 29;136(3):345–352. doi: 10.1016/0014-2999(87)90307-4. [DOI] [PubMed] [Google Scholar]
  22. Jensen P. E., Mulvany M. J., Aalkjaer C. Endogenous and exogenous agonist-induced changes in the coupling between [Ca2+]i and force in rat resistance arteries. Pflugers Arch. 1992 Apr;420(5-6):536–543. doi: 10.1007/BF00374630. [DOI] [PubMed] [Google Scholar]
  23. Jim K. F., Matthews W. D. Role of extracellular calcium in contractions produced by activation of postsynaptic alpha-2 adrenoceptors in the canine saphenous vein. J Pharmacol Exp Ther. 1985 Jul;234(1):161–165. [PubMed] [Google Scholar]
  24. Kaslow H. R., Burns D. L. Pertussis toxin and target eukaryotic cells: binding, entry, and activation. FASEB J. 1992 Jun;6(9):2684–2690. doi: 10.1096/fasebj.6.9.1612292. [DOI] [PubMed] [Google Scholar]
  25. Khalil R. A., Morgan K. G. PKC-mediated redistribution of mitogen-activated protein kinase during smooth muscle cell activation. Am J Physiol. 1993 Aug;265(2 Pt 1):C406–C411. doi: 10.1152/ajpcell.1993.265.2.C406. [DOI] [PubMed] [Google Scholar]
  26. Knepel W., Meyen G. Effect of various blockers of arachidonic acid metabolism on release of beta-endorphin- and adrenocorticotropin-like immunoreactivity induced by phospholipase A2 from rat adenohypophysis in vitro. Neuroendocrinology. 1986;43(1):44–48. doi: 10.1159/000124507. [DOI] [PubMed] [Google Scholar]
  27. Lanni C., Becker E. L. Inhibition of neutrophil phospholipase A2 by p-bromophenylacyl bromide, nordihydroguaiaretic acid, 5,8,11,14-eicosatetraynoic acid and quercetin. Int Arch Allergy Appl Immunol. 1985;76(3):214–217. doi: 10.1159/000233694. [DOI] [PubMed] [Google Scholar]
  28. Lepretre N., Mironneau J., Arnaudeau S., Tanfin Z., Harbon S., Guillon G., Ibarrondo J. Activation of alpha-1A adrenoceptors mobilizes calcium from the intracellular stores in myocytes from rat portal vein. J Pharmacol Exp Ther. 1994 Jan;268(1):167–174. [PubMed] [Google Scholar]
  29. Limbird L. E. Receptors linked to inhibition of adenylate cyclase: additional signaling mechanisms. FASEB J. 1988 Aug;2(11):2686–2695. doi: 10.1096/fasebj.2.11.2840317. [DOI] [PubMed] [Google Scholar]
  30. MacNulty E. E., McClue S. J., Carr I. C., Jess T., Wakelam M. J., Milligan G. Alpha 2-C10 adrenergic receptors expressed in rat 1 fibroblasts can regulate both adenylylcyclase and phospholipase D-mediated hydrolysis of phosphatidylcholine by interacting with pertussis toxin-sensitive guanine nucleotide-binding proteins. J Biol Chem. 1992 Feb 5;267(4):2149–2156. [PubMed] [Google Scholar]
  31. McGrath J. C. Evidence for more than one type of post-junctional alpha-adrenoceptor. Biochem Pharmacol. 1982 Feb 15;31(4):467–484. doi: 10.1016/0006-2952(82)90147-2. [DOI] [PubMed] [Google Scholar]
  32. Michel M. C., Brass L. F., Williams A., Bokoch G. M., LaMorte V. J., Motulsky H. J. Alpha 2-adrenergic receptor stimulation mobilizes intracellular Ca2+ in human erythroleukemia cells. J Biol Chem. 1989 Mar 25;264(9):4986–4991. [PubMed] [Google Scholar]
  33. Miller V. M., Flavahan N. A., Vanhoutte P. M. Pertussis toxin reduces endothelium-dependent and independent responses to alpha-2- adrenergic stimulation in systemic canine arteries and veins. J Pharmacol Exp Ther. 1991 Apr;257(1):290–293. [PubMed] [Google Scholar]
  34. Mulvany M. J., Aalkjaer C. Structure and function of small arteries. Physiol Rev. 1990 Oct;70(4):921–961. doi: 10.1152/physrev.1990.70.4.921. [DOI] [PubMed] [Google Scholar]
  35. Mulvany M. J., Halpern W. Mechanical properties of vascular smooth muscle cells in situ. Nature. 1976 Apr 15;260(5552):617–619. doi: 10.1038/260617a0. [DOI] [PubMed] [Google Scholar]
  36. Nebigil C., Malik K. U. Alpha adrenergic receptor subtypes involved in prostaglandin synthesis are coupled to Ca++ channels through a pertussis toxin-sensitive guanine nucleotide-binding protein. J Pharmacol Exp Ther. 1993 Aug;266(2):1113–1124. [PubMed] [Google Scholar]
  37. Nebigil C., Malik K. U. Prostaglandin synthesis elicited by adrenergic stimuli is mediated via alpha-2C and alpha-1A adrenergic receptors in cultured smooth muscle cells of rabbit aorta. J Pharmacol Exp Ther. 1992 Feb;260(2):849–858. [PubMed] [Google Scholar]
  38. Nielsen H., Hasenkam J. M., Pilegaard H. K., Mortensen F. V., Mulvany M. J. Alpha-adrenoceptors in human resistance arteries from colon, pericardial fat, and skeletal muscle. Am J Physiol. 1991 Sep;261(3 Pt 2):H762–H767. doi: 10.1152/ajpheart.1991.261.3.H762. [DOI] [PubMed] [Google Scholar]
  39. Nielsen H., Mortensen F. V., Mulvany M. J. Responses to noradrenaline in human subcutaneous resistance arteries are mediated by both alpha 1- and alpha 2-adrenoceptors. Br J Pharmacol. 1990 Jan;99(1):31–34. doi: 10.1111/j.1476-5381.1990.tb14649.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nielsen H., Mortensen F. V., Pilegaard H. K., Hasenkam J. M., Mulvany M. J. Calcium utilization coupled to stimulation of postjunctional alpha-1 and alpha-2 adrenoceptors in isolated human resistance arteries. J Pharmacol Exp Ther. 1992 Feb;260(2):637–643. [PubMed] [Google Scholar]
  41. Nielsen H., Thom S. M., Hughes A. D., Martin G. N., Mulvany M. J., Sever P. S. Postjunctional alpha 2-adrenoceptors mediate vasoconstriction in human subcutaneous resistance vessels. Br J Pharmacol. 1989 Jul;97(3):829–834. doi: 10.1111/j.1476-5381.1989.tb12022.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nieuwland R., Wijburg O. L., van Willigen G., Akkerman J. W. Alpha 2A-adrenergic receptors activate protein kinase C in human platelets via a pertussis toxin-sensitive G-protein. FEBS Lett. 1994 Feb 14;339(1-2):79–83. doi: 10.1016/0014-5793(94)80389-7. [DOI] [PubMed] [Google Scholar]
  43. Nishimura J., Khalil R. A., Drenth J. P., van Breemen C. Evidence for increased myofilament Ca2+ sensitivity in norepinephrine-activated vascular smooth muscle. Am J Physiol. 1990 Jul;259(1 Pt 2):H2–H8. doi: 10.1152/ajpheart.1990.259.1.H2. [DOI] [PubMed] [Google Scholar]
  44. Nishimura J., Kolber M., van Breemen C. Norepinephrine and GTP-gamma-S increase myofilament Ca2+ sensitivity in alpha-toxin permeabilized arterial smooth muscle. Biochem Biophys Res Commun. 1988 Dec 15;157(2):677–683. doi: 10.1016/s0006-291x(88)80303-6. [DOI] [PubMed] [Google Scholar]
  45. Ordway R. W., Walsh J. V., Jr, Singer J. J. Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells. Science. 1989 Jun 9;244(4909):1176–1179. doi: 10.1126/science.2471269. [DOI] [PubMed] [Google Scholar]
  46. Parkinson N. A., Thom S. M., Hughes A. D., Sever P. S., Mulvany M. J., Nielsen H. Neurally evoked responses of human isolated resistance arteries are mediated by both alpha 1- and alpha 2-adrenoceptors. Br J Pharmacol. 1992 Jul;106(3):568–573. doi: 10.1111/j.1476-5381.1992.tb14376.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Pichler L., Placheta P., Kobinger W. Effect of azepexole (B-HT 933) on pre- and postsynaptic alpha-adrenoceptors at peripheral and central nervous sites. Eur J Pharmacol. 1980 Jul 25;65(2-3):233–241. doi: 10.1016/0014-2999(80)90396-9. [DOI] [PubMed] [Google Scholar]
  48. Piomelli D. Arachidonic acid in cell signaling. Curr Opin Cell Biol. 1993 Apr;5(2):274–280. doi: 10.1016/0955-0674(93)90116-8. [DOI] [PubMed] [Google Scholar]
  49. Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ruffolo R. R., Jr, Nichols A. J., Oriowo M. A. Interaction of vascular alpha-1 adrenoceptors with multiple signal transduction pathways. Blood Vessels. 1991;28(1-3):122–128. doi: 10.1159/000158851. [DOI] [PubMed] [Google Scholar]
  51. Schoepp D. D., Knepper S. M., Rutledge C. O. Norepinephrine stimulation of phosphoinositide hydrolysis in rat cerebral cortex is associated with the alpha1-adrenoceptor. J Neurochem. 1984 Dec;43(6):1758–1761. doi: 10.1111/j.1471-4159.1984.tb06106.x. [DOI] [PubMed] [Google Scholar]
  52. Somlyo A. P., Himpens B. Cell calcium and its regulation in smooth muscle. FASEB J. 1989 Sep;3(11):2266–2276. doi: 10.1096/fasebj.3.11.2506092. [DOI] [PubMed] [Google Scholar]
  53. Somlyo A. P., Somlyo A. V. Signal transduction and regulation in smooth muscle. Nature. 1994 Nov 17;372(6503):231–236. doi: 10.1038/372231a0. [DOI] [PubMed] [Google Scholar]
  54. Stevens M. J., Moulds R. F. Alpha adrenoceptor activation and postreceptor contractile mechanisms in the human digital artery. J Pharmacol Exp Ther. 1990 Apr;253(1):375–380. [PubMed] [Google Scholar]
  55. Toda N., Inoue S., Bian K., Okamura T. Endothelium-dependent and independent responses to prostaglandin H2 and arachidonic acid in isolated dog cerebral arteries. J Pharmacol Exp Ther. 1988 Jan;244(1):297–302. [PubMed] [Google Scholar]
  56. Vila J., Esplugues J. V., Martinez-Cuesta M. A., Martinez-Martinez M. C., Aldasoro M., Flor B., Lluch S. NG-monomethyl-L-arginine and NG-nitro-L-arginine inhibit endothelium-dependent relaxations in human isolated omental arteries. J Pharm Pharmacol. 1991 Dec;43(12):869–870. doi: 10.1111/j.2042-7158.1991.tb03198.x. [DOI] [PubMed] [Google Scholar]
  57. Wright I. K., Harling R., Kendall D. A., Wilson V. G. Examination of the role of inhibition of cyclic AMP in alpha 2-adrenoceptor mediated contractions of the porcine isolated palmar lateral vein. Br J Pharmacol. 1995 Jan;114(1):157–165. doi: 10.1111/j.1476-5381.1995.tb14920.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES