Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Aug;115(8):1455–1462. doi: 10.1111/j.1476-5381.1995.tb16637.x

Dietary calcium and magnesium supplements in spontaneously hypertensive rats and isolated arterial reactivity.

H Mäkynen 1, M Kähönen 1, P Arvola 1, H Wuorela 1, H Vapaatalo 1, I Pörsti 1
PMCID: PMC1908881  PMID: 8564205

Abstract

1. High calcium diet attenuates the development of hypertension but an associated undesirable effect is that Mg2+ loss to the urine is enhanced. Therefore, we studied the effects of high calcium diet alone and in combination with increased magnesium intake on blood pressure and arterial function. 2. Forty-eight young spontaneously hypertensive rats (SHR) were allocated into four groups, the dietary contents of Ca2+ and Mg2+ being: 1.1%, 0.2% (SHR); 2.5%, 0.2% (Ca-SHR); 2.5%, 0.8% (CaMg-SHR); and 1.1%, 0.8% (Mg-SHR), respectively. Development of hypertension was followed for 13 weeks, whereafter electrolyte balance, lymphocyte intracellular free calcium ([Ca2+]i), and mesenteric arterial responses in vitro were examined. Forty normotensive Wistar-Kyoto (WKY) rats were investigated in a similar manner. 3. Calcium supplementation comparably attenuated the development of Lypertension during normal and high magnesium intake in SHR, with an associated reduced lymphocyte [Ca2+]i and increased Mg2+ loss to the urine. 4. Endothelium-dependent arterial relaxation to acetylcholine was augmented in Ca-SHR and CaMg-SHR, while the relaxations to isoprenaline and the nitric oxide donor SIN-1 were similar in all SHR groups. Relaxation responses induced by the return of K+ to the organ bath upon precontractions in K(+)-free solution were used to evaluate the function of arterial Na+, K(+)-ATPase. The rate of potassium relaxation was similar in Ca-SHR and CaMg-SHR and faster than in untreated SHR.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1455

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altura B. M., Altura B. T., Gebrewold A., Ising H., Günther T. Magnesium deficiency and hypertension: correlation between magnesium-deficient diets and microcirculatory changes in situ. Science. 1984 Mar 23;223(4642):1315–1317. doi: 10.1126/science.6701524. [DOI] [PubMed] [Google Scholar]
  2. Arvola P., Pörsti I., Vuorinen P., Pekki A., Vapaatalo H. Contractions induced by potassium-free solution and potassium relaxation in vascular smooth muscle of hypertensive and normotensive rats. Br J Pharmacol. 1992 May;106(1):157–165. doi: 10.1111/j.1476-5381.1992.tb14309.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arvola P., Ruskoaho H., Pörsti I. Effects of high calcium diet on arterial smooth muscle function and electrolyte balance in mineralocorticoid-salt hypertensive rats. Br J Pharmacol. 1993 Apr;108(4):948–958. doi: 10.1111/j.1476-5381.1993.tb13491.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arvola P., Ruskoaho H., Wuorela H., Pekki A., Vapaatalo H., Pörsti I. Quinapril treatment and arterial smooth muscle responses in spontaneously hypertensive rats. Br J Pharmacol. 1993 Apr;108(4):980–990. doi: 10.1111/j.1476-5381.1993.tb13495.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ayachi S. Increased dietary calcium lowers blood pressure in the spontaneously hypertensive rat. Metabolism. 1979 Dec;28(12):1234–1238. doi: 10.1016/0026-0495(79)90136-7. [DOI] [PubMed] [Google Scholar]
  6. Bonaccorsi A., Hermsmeyer K., Aprigliano O., Smith C. B., Bohr D. F. Mechanism of potassium relaxation of arterial muscle. Blood Vessels. 1977;14(5):261–276. doi: 10.1159/000158133. [DOI] [PubMed] [Google Scholar]
  7. Bukoski R. D., McCarron D. A. Altered aortic reactivity and lowered blood pressure associated with high calcium intake. Am J Physiol. 1986 Nov;251(5 Pt 2):H976–H983. doi: 10.1152/ajpheart.1986.251.5.H976. [DOI] [PubMed] [Google Scholar]
  8. Bülbring E., Tomita T. Catecholamine action on smooth muscle. Pharmacol Rev. 1987 Mar;39(1):49–96. [PubMed] [Google Scholar]
  9. Chrysant S. G., Ganousis L., Chrysant C. Hemodynamic and metabolic effects of hypomagnesemia in spontaneously hypertensive rats. Cardiology. 1988;75(2):81–89. doi: 10.1159/000174354. [DOI] [PubMed] [Google Scholar]
  10. Dohi Y., Aoki K., Fujimoto S., Kojima M., Matsuda T. Alteration in sarcoplasmic reticulum-dependent contraction of tail arteries in response to caffeine and noradrenaline in spontaneously hypertensive rats. J Hypertens. 1990 Mar;8(3):261–267. [PubMed] [Google Scholar]
  11. Doris P. A. Digoxin-like immunoreactive factor in rat plasma: effect of sodium and calcium intake. Life Sci. 1988;42(7):783–790. doi: 10.1016/0024-3205(88)90651-0. [DOI] [PubMed] [Google Scholar]
  12. Doris P. A. Ouabain in plasma from spontaneously hypertensive rats. Am J Physiol. 1994 Jan;266(1 Pt 2):H360–H364. doi: 10.1152/ajpheart.1994.266.1.H360. [DOI] [PubMed] [Google Scholar]
  13. Evans G. H., Weaver C. M., Harrington D. D., Babbs C. F., Jr Association of magnesium deficiency with the blood pressure-lowering effects of calcium. J Hypertens. 1990 Apr;8(4):327–337. doi: 10.1097/00004872-199004000-00006. [DOI] [PubMed] [Google Scholar]
  14. Fujii K., Tominaga M., Ohmori S., Kobayashi K., Koga T., Takata Y., Fujishima M. Decreased endothelium-dependent hyperpolarization to acetylcholine in smooth muscle of the mesenteric artery of spontaneously hypertensive rats. Circ Res. 1992 Apr;70(4):660–669. doi: 10.1161/01.res.70.4.660. [DOI] [PubMed] [Google Scholar]
  15. Furspan P. B., Rinaldi G. J., Hoffman K., Bohr D. F. Dietary calcium and cell membrane abnormality in genetic hypertension. Hypertension. 1989 Jun;13(6 Pt 2):727–730. doi: 10.1161/01.hyp.13.6.727. [DOI] [PubMed] [Google Scholar]
  16. Graves J., Poston L. Beta-adrenoceptor agonist mediated relaxation of rat isolated resistance arteries: a role for the endothelium and nitric oxide. Br J Pharmacol. 1993 Mar;108(3):631–637. doi: 10.1111/j.1476-5381.1993.tb12853.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Guild S. B., Jenkinson S., Muir T. C. Noradrenaline-stimulated inositol phosphate accumulation in arteries from spontaneously-hypertensive rats. Br J Pharmacol. 1992 Aug;106(4):859–864. doi: 10.1111/j.1476-5381.1992.tb14425.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Henrotte J. G., Franck G., Santarromana M., Bourdon R. Tissue and blood magnesium levels in spontaneously hypertensive rats, at rest and in stressful conditions. Magnes Res. 1991 Jun;4(2):91–96. [PubMed] [Google Scholar]
  19. Ito S., Carretero O. A. Impaired response to acetylcholine despite intact endothelium-derived relaxing factor/nitric oxide in isolated microperfused afferent arterioles of the spontaneously hypertensive rat. J Cardiovasc Pharmacol. 1992;20 (Suppl 12):S187–S189. doi: 10.1097/00005344-199204002-00052. [DOI] [PubMed] [Google Scholar]
  20. Karaki H., Weiss G. B. Calcium release in smooth muscle. Life Sci. 1988;42(2):111–122. doi: 10.1016/0024-3205(88)90674-1. [DOI] [PubMed] [Google Scholar]
  21. Kähönen M., Arvola P., Wu X., Pörsti I. Arterial contractions induced by cumulative addition of calcium in hypertensive and normotensive rats: influence of endothelium. Naunyn Schmiedebergs Arch Pharmacol. 1994 Jun;349(6):627–636. doi: 10.1007/BF01258469. [DOI] [PubMed] [Google Scholar]
  22. Lüscher T. F., Vanhoutte P. M. Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension. 1986 Apr;8(4):344–348. doi: 10.1161/01.hyp.8.4.344. [DOI] [PubMed] [Google Scholar]
  23. McCarron D. A., Lucas P. A., Shneidman R. J., LaCour B., Drüeke T. Blood pressure development of the spontaneously hypertensive rat after concurrent manipulations of dietary Ca2+ and Na+. Relation to intestinal Ca2+ fluxes. J Clin Invest. 1985 Sep;76(3):1147–1154. doi: 10.1172/JCI112070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  25. Motoyama T., Sano H., Fukuzaki H. Oral magnesium supplementation in patients with essential hypertension. Hypertension. 1989 Mar;13(3):227–232. doi: 10.1161/01.hyp.13.3.227. [DOI] [PubMed] [Google Scholar]
  26. Mäkynen H., Arvola P., Vapaatalo H., Pörsti I. High calcium diet effectively opposes the development of deoxycorticosterone-salt hypertension in rats. Am J Hypertens. 1994 Jun;7(6):520–528. doi: 10.1093/ajh/7.6.520. [DOI] [PubMed] [Google Scholar]
  27. Nadler J. L., Buchanan T., Natarajan R., Antonipillai I., Bergman R., Rude R. Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension. 1993 Jun;21(6 Pt 2):1024–1029. doi: 10.1161/01.hyp.21.6.1024. [DOI] [PubMed] [Google Scholar]
  28. Ng L. L., Davies J. E., Ameen M. Intracellular free-magnesium levels in vascular smooth muscle and striated muscle cells of the spontaneously hypertensive rat. Metabolism. 1992 Jul;41(7):772–777. doi: 10.1016/0026-0495(92)90319-6. [DOI] [PubMed] [Google Scholar]
  29. Pörsti I., Arvola P., Wuorela H., Vapaatalo H. High calcium diet augments vascular potassium relaxation in hypertensive rats. Hypertension. 1992 Jan;19(1):85–92. doi: 10.1161/01.hyp.19.1.85. [DOI] [PubMed] [Google Scholar]
  30. Reinhart R. A. Magnesium metabolism. A review with special reference to the relationship between intracellular content and serum levels. Arch Intern Med. 1988 Nov;148(11):2415–2420. doi: 10.1001/archinte.148.11.2415. [DOI] [PubMed] [Google Scholar]
  31. Rembold C. M. Regulation of contraction and relaxation in arterial smooth muscle. Hypertension. 1992 Aug;20(2):129–137. doi: 10.1161/01.hyp.20.2.129. [DOI] [PubMed] [Google Scholar]
  32. Resnick L. M., Sosa R. E., Corbett M. L., Gertner J. M., Sealey J. E., Laragh J. H. Effects of dietary calcium on sodium volume vs. renin-dependent forms of experimental hypertension. Trans Assoc Am Physicians. 1986;99:172–179. [PubMed] [Google Scholar]
  33. Rink T. J. Receptor-mediated calcium entry. FEBS Lett. 1990 Aug 1;268(2):381–385. doi: 10.1016/0014-5793(90)81290-5. [DOI] [PubMed] [Google Scholar]
  34. Sugiyama T., Yoshizumi M., Takaku F., Yazaki Y. Abnormal calcium handling in vascular smooth muscle cells of spontaneously hypertensive rats. J Hypertens. 1990 Apr;8(4):369–375. doi: 10.1097/00004872-199004000-00011. [DOI] [PubMed] [Google Scholar]
  35. Treasure C. B., Manoukian S. V., Klein J. L., Vita J. A., Nabel E. G., Renwick G. H., Selwyn A. P., Alexander R. W., Ganz P. Epicardial coronary artery responses to acetylcholine are impaired in hypertensive patients. Circ Res. 1992 Oct;71(4):776–781. doi: 10.1161/01.res.71.4.776. [DOI] [PubMed] [Google Scholar]
  36. Vigorito C., Giordano A., Ferraro P., Acanfora D., De Caprio L., Naddeo C., Rengo F. Hemodynamic effects of magnesium sulfate on the normal human heart. Am J Cardiol. 1991 Jun 15;67(16):1435–1437. doi: 10.1016/0002-9149(91)90478-4. [DOI] [PubMed] [Google Scholar]
  37. Wong N. L., Hu D. C., Wong E. F. Effect of dietary magnesium on atrial natriuretic peptide release. Am J Physiol. 1991 Nov;261(5 Pt 2):H1353–H1357. doi: 10.1152/ajpheart.1991.261.5.H1353. [DOI] [PubMed] [Google Scholar]
  38. Wuorela H., Arvola P., Pörsti I., Siltaloppi E., Säynävälammi P., Vapaatalo H. The effect of high calcium intake on Ca2+ ATPase and the tissue Na:K ratio in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol. 1992 Jan;345(1):117–122. doi: 10.1007/BF00175478. [DOI] [PubMed] [Google Scholar]
  39. Xiao X. H., Rand M. J. Mechanisms of vasoconstrictor responses to KCl in rat isolated perfused tail arteries: interaction with the alpha 2-adrenoceptor agonist UK14304. Eur J Pharmacol. 1991 Apr 17;196(2):133–136. doi: 10.1016/0014-2999(91)90418-p. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES