Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Sep;116(1):1685–1691. doi: 10.1111/j.1476-5381.1995.tb16392.x

pH-dependent transport of procainamide in cultured renal epithelial monolayers of OK cells: consistent with nonionic diffusion.

A J Dudley 1, C D Brown 1
PMCID: PMC1908901  PMID: 8564238

Abstract

1. Previous studies suggest that procainamide is a substrate for organic cation/proton antiport. In order to study the coupling between procainamide flux and proton flux in greater detail we investigated the effects of extracellular procainamide addition upon intracellular pH in cultured monolayers of renal OK cells. Intracellular pH was monitored by use of BCECF as a probe. 2. Apical addition of procainamide (10 mM) caused a significant alkalinisation of intracellular pH. Basolateral addition of procainamide was equally effective in raising intracellular pH. A similar alkalinisation was found in two other renal cell lines: MDCK strain 1 and LLCPK1. 3. In contrast, both tetraethylammonium and N-methylnicotinamide, archetypal substrates for organic cation/proton antiport were without effect upon intracellular pH. 4. At physiological pH values, procainamide exists as a neutral weak base (B) and its conjugate weak acid (BH+). To test which species of procainamide was responsible for the alkalinisation, experiments in which [B] was kept constant whilst [BH+] was varied from 1.15 mM to 7.25 mM were performed. The results suggested that the neutral weak base (B) was the permeant species. 5. Procainamide efflux from procainamide-loaded cell monolayers resulted in a significant acidification of intracellular pH. As with procainamide uptake, this result could be ascribed to the movement of neutral weak base. 6. These effects of procainamide upon intracellular pH are consistent with nonionic diffusion of procainamide rather than an interaction of procainamide with the organic cation/proton antiporter. In addition, the results suggest that organic cation/proton antiport is not highly expressed in OK cells.

Full text

PDF
1685

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boom S. P., Gribnau F. W., Russel F. G. Organic cation transport and cationic drug interactions in freshly isolated proximal tubular cells of the rat. J Pharmacol Exp Ther. 1992 Nov;263(2):445–450. [PubMed] [Google Scholar]
  2. Boyarsky G., Ganz M. B., Sterzel R. B., Boron W. F. pH regulation in single glomerular mesangial cells. I. Acid extrusion in absence and presence of HCO3-. Am J Physiol. 1988 Dec;255(6 Pt 1):C844–C856. doi: 10.1152/ajpcell.1988.255.6.C844. [DOI] [PubMed] [Google Scholar]
  3. Dantzler W. H., Wright S. H., Chatsudthipong V., Brokl O. H. Basolateral tetraethylammonium transport in intact tubules: specificity and trans-stimulation. Am J Physiol. 1991 Sep;261(3 Pt 2):F386–F392. doi: 10.1152/ajprenal.1991.261.3.F386. [DOI] [PubMed] [Google Scholar]
  4. Gründemann D., Gorboulev V., Gambaryan S., Veyhl M., Koepsell H. Drug excretion mediated by a new prototype of polyspecific transporter. Nature. 1994 Dec 8;372(6506):549–552. doi: 10.1038/372549a0. [DOI] [PubMed] [Google Scholar]
  5. Holohan P. D., Ross C. R. Mechanisms of organic cation transport in kidney plasma membrane vesicles: 2. delta pH studies. J Pharmacol Exp Ther. 1981 Feb;216(2):294–298. [PubMed] [Google Scholar]
  6. Hsyu P. H., Giacomini K. M. The pH gradient-dependent transport of organic cations in the renal brush border membrane. Studies with acridine orange. J Biol Chem. 1987 Mar 25;262(9):3964–3968. [PubMed] [Google Scholar]
  7. Inui K., Saito H., Hori R. H+-gradient-dependent active transport of tetraethylammonium cation in apical-membrane vesicles isolated from kidney epithelial cell line LLC-PK1. Biochem J. 1985 Apr 1;227(1):199–203. doi: 10.1042/bj2270199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McKinney T. D., DeLeon C., Speeg K. V., Jr Organic cation uptake by a cultured renal epithelium. J Cell Physiol. 1988 Dec;137(3):513–520. doi: 10.1002/jcp.1041370317. [DOI] [PubMed] [Google Scholar]
  9. McKinney T. D., Kunnemann M. E. Procainamide transport in rabbit renal cortical brush border membrane vesicles. Am J Physiol. 1985 Oct;249(4 Pt 2):F532–F541. doi: 10.1152/ajprenal.1985.249.4.F532. [DOI] [PubMed] [Google Scholar]
  10. McKinney T. D., Speeg K. V., Jr Cimetidine and procainamide secretion by proximal tubules in vitro. Am J Physiol. 1982 Jun;242(6):F672–F680. doi: 10.1152/ajprenal.1982.242.6.F672. [DOI] [PubMed] [Google Scholar]
  11. Montrose-Rafizadeh C., Mingard F., Murer H., Roch-Ramel F. Carrier-mediated transport of tetraethylammonium across rabbit renal basolateral membrane. Am J Physiol. 1989 Aug;257(2 Pt 2):F243–F251. doi: 10.1152/ajprenal.1989.257.2.F243. [DOI] [PubMed] [Google Scholar]
  12. Ott R. J., Hui A. C., Yuan G., Giacomini K. M. Organic cation transport in human renal brush-border membrane vesicles. Am J Physiol. 1991 Sep;261(3 Pt 2):F443–F451. doi: 10.1152/ajprenal.1991.261.3.F443. [DOI] [PubMed] [Google Scholar]
  13. Pritchard J. B., Miller D. S. Mechanisms mediating renal secretion of organic anions and cations. Physiol Rev. 1993 Oct;73(4):765–796. doi: 10.1152/physrev.1993.73.4.765. [DOI] [PubMed] [Google Scholar]
  14. Rennick B. R. Renal tubule transport of organic cations. Am J Physiol. 1981 Feb;240(2):F83–F89. doi: 10.1152/ajprenal.1981.240.2.F83. [DOI] [PubMed] [Google Scholar]
  15. Saito H., Yamamoto M., Inui K., Hori R. Transcellular transport of organic cation across monolayers of kidney epithelial cell line LLC-PK. Am J Physiol. 1992 Jan;262(1 Pt 1):C59–C66. doi: 10.1152/ajpcell.1992.262.1.C59. [DOI] [PubMed] [Google Scholar]
  16. Schäli C., Schild L., Overney J., Roch-Ramel F. Secretion of tetraethylammonium by proximal tubules of rabbit kidneys. Am J Physiol. 1983 Aug;245(2):F238–F246. doi: 10.1152/ajprenal.1983.245.2.F238. [DOI] [PubMed] [Google Scholar]
  17. Sokol P. P., Holohan P. D., Grassl S. M., Ross C. R., Grass S. M. Proton-coupled organic cation transport in renal brush-border membrane vesicles. Biochim Biophys Acta. 1988 May 24;940(2):209–218. doi: 10.1016/0005-2736(88)90196-4. [DOI] [PubMed] [Google Scholar]
  18. Takano M., Inui K., Okano T., Saito H., Hori R. Carrier-mediated transport systems of tetraethylammonium in rat renal brush-border and basolateral membrane vesicles. Biochim Biophys Acta. 1984 Jun 13;773(1):113–124. doi: 10.1016/0005-2736(84)90556-x. [DOI] [PubMed] [Google Scholar]
  19. Takano M., Kato M., Takayama A., Yasuhara M., Inui K., Hori R. Transport of procainamide in a kidney epithelial cell line LLC-PK1. Biochim Biophys Acta. 1992 Jul 27;1108(2):133–139. doi: 10.1016/0005-2736(92)90017-g. [DOI] [PubMed] [Google Scholar]
  20. Thwaites D. T., Brown C. D., Hirst B. H., Simmons N. L. Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H(+)-coupled carriers at both apical and basal membranes. J Biol Chem. 1993 Apr 15;268(11):7640–7642. [PubMed] [Google Scholar]
  21. Ullrich K. J. Specificity of transporters for 'organic anions' and 'organic cations' in the kidney. Biochim Biophys Acta. 1994 Apr 5;1197(1):45–62. doi: 10.1016/0304-4157(94)90018-3. [DOI] [PubMed] [Google Scholar]
  22. Yuan G., Ott R. J., Salgado C., Giacomini K. M. Transport of organic cations by a renal epithelial cell line (OK). J Biol Chem. 1991 May 15;266(14):8978–8986. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES