Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Sep;116(1):1583–1588. doi: 10.1111/j.1476-5381.1995.tb16376.x

Hyperpolarization by GABAB receptor agonists in mid-brain periaqueductal gray neurones in vitro.

B Chieng 1, M J Christie 1
PMCID: PMC1908916  PMID: 8564222

Abstract

1. The effects of GABAB receptor stimulation on membrane properties of rat periaqueductal gray neurones were studied by use of intracellular recordings from single neurones in superfused brain slices. Intracellular staining with biocytin was used to characterize the anatomical location of each impaled neurone. 2. The GABAB receptor agonist, baclofen, directly hyperpolarized or produced an outward current (single electrode voltage-clamp) in all 66 neurones tested. Baclofen-induced hyperpolarizations were concentration-dependent with an EC50 of approximately 0.6 microM and maximum hyperpolarization with 10 microM baclofen. Hyperpolarizations persisted in the presence of tetrodotoxin (1 microM, n = 2). 3. 2-OH-saclofen, a selective GABAB receptor antagonist, competitively antagonized baclofen-induced hyperpolarizations (n = 4) with equilibrium dissociation constants estimated in two neurones to be 6 and 23 microM. Naloxone (1 microM) did not prevent hyperpolarizations induced by baclofen (n = 34). 4. Hyperpolarizations induced by baclofen were associated with an increased inwardly rectifying potassium conductance. Ba2+ superfusion (5 to 10 mM) blocked this conductance increase (n = 4). Elevation of extracellular potassium concentration (from 2.5 to 6.5 mM) shifted the reversal potential in agreement with predictions of the Nernst equation. 5. Hyperpolarizations produced by baclofen (10 microM) desensitized (> 5% inhibition of the maximum response) in 7/22 neurones during continuous superfusion for 5 min. Strong desensitization (> 25% inhibition of the maximum response) was observed in only 2/22 neurones in the ventrolateral periaqueductal gray. In contrast 6/9 neurones in the laterodorsal tegmental nucleus displayed strong desensitization. 6. These studies demonstrate that baclofen acting on GABAB receptors increases potassium conductance in all lateral and ventrolateral periaqueductal gray neurones.

Full text

PDF
1583

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandler R., Shipley M. T. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci. 1994 Sep;17(9):379–389. doi: 10.1016/0166-2236(94)90047-7. [DOI] [PubMed] [Google Scholar]
  2. Basbaum A. I., Fields H. L. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci. 1984;7:309–338. doi: 10.1146/annurev.ne.07.030184.001521. [DOI] [PubMed] [Google Scholar]
  3. Bowery N. G., Hudson A. L., Price G. W. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience. 1987 Feb;20(2):365–383. doi: 10.1016/0306-4522(87)90098-4. [DOI] [PubMed] [Google Scholar]
  4. Bowery N. GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol Sci. 1989 Oct;10(10):401–407. doi: 10.1016/0165-6147(89)90188-0. [DOI] [PubMed] [Google Scholar]
  5. Brooks P. A., Glaum S. R., Miller R. J., Spyer K. M. The actions of baclofen on neurones and synaptic transmission in the nucleus tractus solitarii of the rat in vitro. J Physiol. 1992 Nov;457:115–129. doi: 10.1113/jphysiol.1992.sp019367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chieng B., Christie M. J. Hyperpolarization by opioids acting on mu-receptors of a sub-population of rat periaqueductal gray neurones in vitro. Br J Pharmacol. 1994 Sep;113(1):121–128. doi: 10.1111/j.1476-5381.1994.tb16183.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chieng B., Christie M. J. Inhibition by opioids acting on mu-receptors of GABAergic and glutamatergic postsynaptic potentials in single rat periaqueductal gray neurones in vitro. Br J Pharmacol. 1994 Sep;113(1):303–309. doi: 10.1111/j.1476-5381.1994.tb16209.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Christie M. J., North R. A. Agonists at mu-opioid, M2-muscarinic and GABAB-receptors increase the same potassium conductance in rat lateral parabrachial neurones. Br J Pharmacol. 1988 Nov;95(3):896–902. doi: 10.1111/j.1476-5381.1988.tb11719.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chu D. C., Albin R. L., Young A. B., Penney J. B. Distribution and kinetics of GABAB binding sites in rat central nervous system: a quantitative autoradiographic study. Neuroscience. 1990;34(2):341–357. doi: 10.1016/0306-4522(90)90144-s. [DOI] [PubMed] [Google Scholar]
  10. Colmers W. F., Williams J. T. Pertussis toxin pretreatment discriminates between pre- and postsynaptic actions of baclofen in rat dorsal raphe nucleus in vitro. Neurosci Lett. 1988 Nov 11;93(2-3):300–306. doi: 10.1016/0304-3940(88)90099-7. [DOI] [PubMed] [Google Scholar]
  11. Corli O., Roma G., Bacchini M., Battagliarin G., Di Piazza D., Brambilla C., Grossi E. Double-blind placebo-controlled trial of baclofen, alone and in combination, in patients undergoing voluntary abortion. Clin Ther. 1984;6(6):800–807. [PubMed] [Google Scholar]
  12. Cutting D. A., Jordan C. C. Alternative approaches to analgesia: baclofen as a model compound. Br J Pharmacol. 1975 Jun;54(2):171–179. doi: 10.1111/j.1476-5381.1975.tb06926.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fardin V., Oliveras J. L., Besson J. M. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. I. The production of behavioral side effects together with analgesia. Brain Res. 1984 Jul 23;306(1-2):105–123. doi: 10.1016/0006-8993(84)90360-3. [DOI] [PubMed] [Google Scholar]
  14. Fardin V., Oliveras J. L., Besson J. M. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. II. Differential characteristics of the analgesia induced by ventral and dorsal PAG stimulation. Brain Res. 1984 Jul 23;306(1-2):125–139. doi: 10.1016/0006-8993(84)90361-5. [DOI] [PubMed] [Google Scholar]
  15. Fields H. L., Barbaro N. M., Heinricher M. M. Brain stem neuronal circuitry underlying the antinociceptive action of opiates. Prog Brain Res. 1988;77:245–257. doi: 10.1016/s0079-6123(08)62792-2. [DOI] [PubMed] [Google Scholar]
  16. Fields H. L., Heinricher M. M., Mason P. Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci. 1991;14:219–245. doi: 10.1146/annurev.ne.14.030191.001251. [DOI] [PubMed] [Google Scholar]
  17. Fromm G. H., Terrence C. F., Chattha A. S. Baclofen in the treatment of trigeminal neuralgia: double-blind study and long-term follow-up. Ann Neurol. 1984 Mar;15(3):240–244. doi: 10.1002/ana.410150306. [DOI] [PubMed] [Google Scholar]
  18. Howe J. R., Sutor B., Zieglgänsberger W. Baclofen reduces post-synaptic potentials of rat cortical neurones by an action other than its hyperpolarizing action. J Physiol. 1987 Mar;384:539–569. doi: 10.1113/jphysiol.1987.sp016469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kerr D. I., Ong J., Johnston G. A., Abbenante J., Prager R. H. 2-Hydroxy-saclofen: an improved antagonist at central and peripheral GABAB receptors. Neurosci Lett. 1988 Sep 23;92(1):92–96. doi: 10.1016/0304-3940(88)90748-3. [DOI] [PubMed] [Google Scholar]
  20. Kerr D. I., Ong J., Johnston G. A., Abbenante J., Prager R. H. Antagonism at GABAB receptors by saclofen and related sulphonic analogues of baclofen and GABA. Neurosci Lett. 1989 Dec 15;107(1-3):239–244. doi: 10.1016/0304-3940(89)90824-0. [DOI] [PubMed] [Google Scholar]
  21. Lacey M. G., Mercuri N. B., North R. A. On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones. J Physiol. 1988 Jul;401:437–453. doi: 10.1113/jphysiol.1988.sp017171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Levy R. A., Proudfit H. K. Analgesia produced by microinjection of baclofen and morphine at brain stem sites. Eur J Pharmacol. 1979 Jul 15;57(1):43–55. doi: 10.1016/0014-2999(79)90102-x. [DOI] [PubMed] [Google Scholar]
  23. Levy R. A., Proudfit H. K. The analgesic action of baclofen [beta-(4-chlorophenyl)-gamma-aminobutyric acid]. J Pharmacol Exp Ther. 1977 Aug;202(2):437–445. [PubMed] [Google Scholar]
  24. Lovick T. A. Inhibitory modulation of the cardiovascular defence response by the ventrolateral periaqueductal grey matter in rats. Exp Brain Res. 1992;89(1):133–139. doi: 10.1007/BF00229010. [DOI] [PubMed] [Google Scholar]
  25. Newberry N. R., Nicoll R. A. Comparison of the action of baclofen with gamma-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J Physiol. 1985 Mar;360:161–185. doi: 10.1113/jphysiol.1985.sp015610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Osmanović S. S., Shefner S. A. Baclofen increases the potassium conductance of rat locus coeruleus neurons recorded in brain slices. Brain Res. 1988 Jan 12;438(1-2):124–136. doi: 10.1016/0006-8993(88)91331-5. [DOI] [PubMed] [Google Scholar]
  27. Panerai A. E., Massei R., de Silva E., Sacerdote P., Monza G., Mantegazza P. Baclofen prolongs the analgesic effect of fentanyl in man. Br J Anaesth. 1985 Oct;57(10):954–955. doi: 10.1093/bja/57.10.954. [DOI] [PubMed] [Google Scholar]
  28. Proudfit H. K., Levy R. A. Delimitation of neuronal substrates necessary for the analgesic action of baclofen and morphine. Eur J Pharmacol. 1978 Jan 15;47(2):159–166. doi: 10.1016/0014-2999(78)90387-4. [DOI] [PubMed] [Google Scholar]
  29. Reichling D. B., Basbaum A. I. Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus. J Comp Neurol. 1990 Dec 8;302(2):370–377. doi: 10.1002/cne.903020213. [DOI] [PubMed] [Google Scholar]
  30. Sánchez D., Ribas J. Properties and ionic basis of the action potentials in the periaqueductal grey neurones of the guinea-pig. J Physiol. 1991;440:167–187. doi: 10.1113/jphysiol.1991.sp018702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yaksh T. L., Yeung J. C., Rudy T. A. Systematic examination in the rat of brain sites sensitive to the direct application of morphine: observation of differential effects within the periaqueductal gray. Brain Res. 1976 Sep 10;114(1):83–103. doi: 10.1016/0006-8993(76)91009-x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES