Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Sep;116(1):1680–1684. doi: 10.1111/j.1476-5381.1995.tb16391.x

Accelerated desensitization of nicotinic receptor channels and its dependence on extracellular calcium in isolated skeletal muscles of streptozotocin-diabetic mice.

H Nojima 1, H Tsuneki 1, I Kimura 1, M Kimura 1
PMCID: PMC1908922  PMID: 8564237

Abstract

1. To elucidate the influence of the diabetic state on desensitization of nicotinic acetylcholine (ACh) receptor channels, we investigated the time course of the decrease in amplitude of ACh potentials elicited by iontophoretic application to isolated diaphragm muscle of streptozotocin-diabetic mice. We also investigated time- and extracellular Ca(2+)-dependent changes in the channel opening frequency of ACh-activated channel currents and the involvement of protein kinases by use of the cell-attached patch clamp technique in single skeletal muscle cells. 2. When ACh potentials were evoked at 10 Hz, the decline in trains of ACh potentials was accelerated in the diabetic state. 3. The time-dependent decrease in the channel opening frequency of diabetic muscle cells was greatly accelerated compared with normal cells in 2.5 mM Ca2+ medium. 4. This accelerated decrease in channel opening frequency was restored by pretreatment with a protein kinase C inhibitor, staurosporine (10 nM) but neither a protein kinase A inhibitor, H-89 (3 microM) nor a calmodulin kinase II inhibitor, KN-62 (5 microM) were able to restore the fall in opening frequency. 5. These results demonstrate that in the diabetic state the desensitization of nicotinic ACh receptor channels may be greatly accelerated by activating protein kinase C, which is caused by an increase in the amount of available intracellular Ca2+.

Full text

PDF
1680

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anwyl R., Narahashi T. Desensitization of the acetylcholine receptor of denervated rat soleus muscle and the effect of calcium. Br J Pharmacol. 1980 May;69(1):91–98. doi: 10.1111/j.1476-5381.1980.tb10886.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COUERS C., HILDEBRAND J. LATENT NEUROPATHY IN DIABETES AND ALCOHOLISM: ELECTROMYOGRAPHIC AND HISTOLOGICAL STUDY. Neurology. 1965 Jan;15:19–38. doi: 10.1212/wnl.15.1.19. [DOI] [PubMed] [Google Scholar]
  3. Chang H. W., Neumann E. Dynamic properties of isolated acetylcholine receptor proteins: release of calcium ions caused by acetylcholine binding. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3364–3368. doi: 10.1073/pnas.73.10.3364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chesnut T. J. Two-component desensitization at the neuromuscular junction of the frog. J Physiol. 1983 Mar;336:229–241. doi: 10.1113/jphysiol.1983.sp014578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chijiwa T., Mishima A., Hagiwara M., Sano M., Hayashi K., Inoue T., Naito K., Toshioka T., Hidaka H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem. 1990 Mar 25;265(9):5267–5272. [PubMed] [Google Scholar]
  6. Craven P. A., DeRubertis F. R. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose. J Clin Invest. 1989 May;83(5):1667–1675. doi: 10.1172/JCI114066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Das P. K., Bray G. M., Aguayo A. J., Rasminsky M. Diminished ouabain-sensitive, sodium-potassium ATPase activity in sciatic nerves of rats with streptozotocin-induced diabetes. Exp Neurol. 1976 Oct;53(1):285–288. doi: 10.1016/0014-4886(76)90299-5. [DOI] [PubMed] [Google Scholar]
  8. Dionne V. E. Two types of nicotinic acetylcholine receptor channels at slow fibre end-plates of the garter snake. J Physiol. 1989 Feb;409:313–331. doi: 10.1113/jphysiol.1989.sp017499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eusebi F., Molinaro M., Zani B. M. Agents that activate protein kinase C reduce acetylcholine sensitivity in cultured myotubes. J Cell Biol. 1985 Apr;100(4):1339–1342. doi: 10.1083/jcb.100.4.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feltz A., Trautmann A. Desensitization at the frog neuromuscular junction: a biphasic process. J Physiol. 1982 Jan;322:257–272. doi: 10.1113/jphysiol.1982.sp014036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gillon K. R., Hawthorne J. N. Sorbitol, inositol and nerve conduction in diabetes. Life Sci. 1983 Apr 25;32(17):1943–1947. doi: 10.1016/0024-3205(83)90045-0. [DOI] [PubMed] [Google Scholar]
  12. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  13. Hegarty P. V., Rosholt M. N. Effects of streptozotocin-induced diabetes on the number and diameter of fibres in different skeletal muscles of the rat. J Anat. 1981 Sep;133(Pt 2):205–211. [PMC free article] [PubMed] [Google Scholar]
  14. Hermenegildo C., Felipo V., Miñana M. D., Grisolía S. Inhibition of protein kinase C restores Na+,K(+)-ATPase activity in sciatic nerve of diabetic mice. J Neurochem. 1992 Apr;58(4):1246–1249. doi: 10.1111/j.1471-4159.1992.tb11335.x. [DOI] [PubMed] [Google Scholar]
  15. Huganir R. L., Delcour A. H., Greengard P., Hess G. P. Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature. 1986 Jun 19;321(6072):774–776. doi: 10.1038/321774a0. [DOI] [PubMed] [Google Scholar]
  16. Kimura I., Kimura M., Kimura M. Increase in electrically-stimulated Ca2+ release and suppression of caffeine response in diaphragm muscle of alloxan-diabetic mice compared with the denervation effect. Diabetologia. 1990 Feb;33(2):72–76. doi: 10.1007/BF00401043. [DOI] [PubMed] [Google Scholar]
  17. Kobayashi S., Fujihara M., Hoshino N., Kimura I., Kimura M. Diabetic state-induced activation of calcium-activated neutral proteinase in mouse skeletal muscle. Endocrinol Jpn. 1989 Dec;36(6):833–844. doi: 10.1507/endocrj1954.36.833. [DOI] [PubMed] [Google Scholar]
  18. Nakagawa M., Kobayashi S., Kimura I., Kimura M. Diabetic state-induced modification of Ca, Mg, Fe and Zn content of skeletal, cardiac and smooth muscles. Endocrinol Jpn. 1989 Dec;36(6):795–807. doi: 10.1507/endocrj1954.36.795. [DOI] [PubMed] [Google Scholar]
  19. Nastuk W. L., Parsons R. L. Factors in the inactivation of postjunctional membrane receptors of frog skeletal muscle. J Gen Physiol. 1970 Aug;56(2):218–249. doi: 10.1085/jgp.56.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nojima H., Kimura I., Kimura M. The evidence of accelerative interaction between cAMP-dependent protein kinase and external calcium for the desensitization of nicotinic acetylcholine receptor channel in mouse skeletal muscle cells. Neurosci Lett. 1994 Feb 14;167(1-2):113–116. doi: 10.1016/0304-3940(94)91040-5. [DOI] [PubMed] [Google Scholar]
  21. Nojima H., Muroi M., Kimura I., Kimura M. Indirect inhibitory effect of succinylcholine on acetylcholine-activated channel activities and its modulation by external Ca2+ in mouse skeletal muscles. Br J Pharmacol. 1992 Jan;105(1):23–26. doi: 10.1111/j.1476-5381.1992.tb14205.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ochoa E. L., Chattopadhyay A., McNamee M. G. Desensitization of the nicotinic acetylcholine receptor: molecular mechanisms and effect of modulators. Cell Mol Neurobiol. 1989 Jun;9(2):141–178. doi: 10.1007/BF00713026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Olson E. N., Kelley D. A., Smith P. B. Characterization of rat skeletal muscle sarcolemma during the development of diabetes. Exp Neurol. 1981 Jul;73(1):154–172. doi: 10.1016/0014-4886(81)90052-2. [DOI] [PubMed] [Google Scholar]
  24. Pain V. M., Garlick P. J. Effect of streptozotocin diabetes and insulin treatment on the rate of protein synthesis in tissues of the rat in vivo. J Biol Chem. 1974 Jul 25;249(14):4510–4514. [PubMed] [Google Scholar]
  25. Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
  26. Tattersall J. E. Effects of organophosphorus anticholinesterases on nicotinic receptor ion channels at adult mouse muscle endplates. Br J Pharmacol. 1990 Oct;101(2):349–357. doi: 10.1111/j.1476-5381.1990.tb12713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tokumitsu H., Chijiwa T., Hagiwara M., Mizutani A., Terasawa M., Hidaka H. KN-62, 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1990 Mar 15;265(8):4315–4320. [PubMed] [Google Scholar]
  28. Wali R. K., Dudeja P. K., Bolt M. J., Sitrin M. D., Brasitus T. A. Correction of abnormal small intestinal cytosolic protein kinase C activity in streptozotocin-induced diabetes by insulin therapy. Biochem J. 1990 Dec 15;272(3):653–658. doi: 10.1042/bj2720653. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES