Abstract
1. The time-course and comparative effects of treatment with clofibrate (CFB), bezafibrate (BFB), and gemfibrozil (GFB) on the acyl composition of the main microsomal phospholipids, i.e. phosphatidylcholine and phosphatidylethanolamine, have been studied in male Sprague-Dawley rats. 2. The administration of the three fibrates caused a strong peroxisomal induction and a hypolipidaemic effect. Concerning the changes in acyl composition, CFB and BFB behaved in a similar way, with differences which could be attributed to their different potency as peroxisome inducers, whereas GFB showed a somewhat distinct profile. 3. The three drugs increased the relative content of palmitic, palmitoleic and oleic acids, whereas the levels of stearic acid and also those of long chain, highly unsaturated fatty acids docosatetraenoic, docosapentaenoic and docosahexaenoic acids were reduced. In general, these effects appeared from the first day of treatment and were highly correlated with peroxisomal proliferation. In addition, they were more evident in the phosphatidylcholine than in the phosphatidylethanolamine fraction. 4. Fibrates increased total monounsaturated fatty acids, whereas a decrease in total polyunsaturated fatty acids in the phosphatidylcholine fraction was observed in CFB- and BFB-, but not in GFB-treated rats. Clear differences appeared between CFB and BFB on the one hand, and GFB on the other when the influence of fibrate treatment on the molar percentages of linoleic, eicosatrienoic, arachidonic and mead acids was analyzed. 5. GFB increased linoleic acid content in phosphatidylethanolamine, whereas CFB and BFB decreased its level in both phospholipid fractions. In contrast, CFB and BFB enhanced eicosatrienoic and mead acids in both fractions and arachidonic acid in phosphatidylethanolamine, whereas GFB had practically no effect.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agheli N., Jacotot B. Effect of simvastatin and fenofibrate on the fatty acid composition of hypercholesterolaemic patients. Br J Clin Pharmacol. 1991 Oct;32(4):423–428. doi: 10.1111/j.1365-2125.1991.tb03925.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alegret M., Cerqueda E., Ferrando R., Vázquez M., Sánchez R. M., Adzet T., Merlos M., Laguna J. C. Selective modification of rat hepatic microsomal fatty acid chain elongation and desaturation by fibrates: relationship with peroxisome proliferation. Br J Pharmacol. 1995 Apr;114(7):1351–1358. doi: 10.1111/j.1476-5381.1995.tb13355.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alegret M., Ferrando R., Vázquez M., Adzet T., Merlos M., Laguna J. C. Relationship between plasma lipids and palmitoyl-CoA hydrolase and synthetase activities with peroxisomal proliferation in rats treated with fibrates. Br J Pharmacol. 1994 Jun;112(2):551–556. doi: 10.1111/j.1476-5381.1994.tb13109.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Berge R. K., Bakke O. M. Changes in lipid metabolizing enzymes of hepatic subcellular fractions from rats treated with tiadenol and clofibrate. Biochem Pharmacol. 1981 Aug 15;30(16):2251–2256. doi: 10.1016/0006-2952(81)90095-2. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Catapano A. L. Mode of action of fibrates. Pharmacol Res. 1992 Dec;26(4):331–340. doi: 10.1016/1043-6618(92)90232-z. [DOI] [PubMed] [Google Scholar]
- Cayen M. N. Disposition, metabolism and pharmacokinetics of antihyperlipidemic agents in laboratory animals and man. Pharmacol Ther. 1985;29(2):157–204. doi: 10.1016/0163-7258(85)90028-2. [DOI] [PubMed] [Google Scholar]
- Endo A. Chemistry, biochemistry, and pharmacology of HMG-CoA reductase inhibitors. Klin Wochenschr. 1988 May 16;66(10):421–427. doi: 10.1007/BF01745510. [DOI] [PubMed] [Google Scholar]
- Gavino G. R., Levy E., Gavino V. C. Essential fatty acid deficiency lowers the activity of the acetylated low density lipoprotein receptor of rat peritoneal macrophages. Biochem Cell Biol. 1992 Mar-Apr;70(3-4):224–227. doi: 10.1139/o92-033. [DOI] [PubMed] [Google Scholar]
- Hawkins J. M., Jones W. E., Bonner F. W., Gibson G. G. The effect of peroxisome proliferators on microsomal, peroxisomal, and mitochondrial enzyme activities in the liver and kidney. Drug Metab Rev. 1987;18(4):441–515. doi: 10.3109/03602538708994130. [DOI] [PubMed] [Google Scholar]
- Illingworth D. R. Lipid-lowering drugs. An overview of indications and optimum therapeutic use. Drugs. 1987 Mar;33(3):259–279. doi: 10.2165/00003495-198733030-00003. [DOI] [PubMed] [Google Scholar]
- Kawashima Y., Hirose A., Kozuka H. Modification by clofibric acid of acyl composition of glycerolipids in rat liver. Possible involvement of fatty acid chain elongation and desaturation. Biochim Biophys Acta. 1984 Oct 4;795(3):543–551. doi: 10.1016/0005-2760(84)90184-x. [DOI] [PubMed] [Google Scholar]
- Kawashima Y., Matsunaga T., Hirose A., Ogata T., Kozuka H. Induction of microsomal 1-acylglycerophosphocholine acyltransferase by peroxisome proliferators in rat kidney; co-induction with peroxisomal beta-oxidation. Biochim Biophys Acta. 1989 Nov 28;1006(2):214–218. doi: 10.1016/0005-2760(89)90199-9. [DOI] [PubMed] [Google Scholar]
- Kawashima Y., Musoh K., Kozuka H. Peroxisome proliferators enhance linoleic acid metabolism in rat liver. Increased biosynthesis of omega 6 polyunsaturated fatty acids. J Biol Chem. 1990 Jun 5;265(16):9170–9175. [PubMed] [Google Scholar]
- Kłosiewicz-Latoszek L., Szostak W. B. Comparative studies on the influence of different fibrates on serum lipoproteins in endogenous hyperlipoproteinaemia. Eur J Clin Pharmacol. 1991;40(1):33–41. doi: 10.1007/BF00315136. [DOI] [PubMed] [Google Scholar]
- Lake B. G., Gray T. J. Species differences in hepatic peroxisome proliferation. Biochem Soc Trans. 1985 Oct;13(5):859–861. doi: 10.1042/bst0130859. [DOI] [PubMed] [Google Scholar]
- Lazarow P. B. Assay of peroxisomal beta-oxidation of fatty acids. Methods Enzymol. 1981;72:315–319. doi: 10.1016/s0076-6879(81)72021-4. [DOI] [PubMed] [Google Scholar]
- MEAD J. F., SLATON W. H., Jr Metabolism of essential fatty acids. III. Isolation of 5,8,11-eicosatrienoic acid from fat-deficient rats. J Biol Chem. 1956 Apr;219(2):705–709. [PubMed] [Google Scholar]
- Osmundsen H., Bremer J., Pedersen J. I. Metabolic aspects of peroxisomal beta-oxidation. Biochim Biophys Acta. 1991 Sep 11;1085(2):141–158. doi: 10.1016/0005-2760(91)90089-z. [DOI] [PubMed] [Google Scholar]
- Sirtori C. R., Manzoni C., Lovati M. R. Mechanisms of lipid-lowering agents. Cardiology. 1991;78(3):226–235. doi: 10.1159/000174789. [DOI] [PubMed] [Google Scholar]
- Stubbs C. D., Smith A. D. Essential fatty acids in membrane: physical properties and function. Biochem Soc Trans. 1990 Oct;18(5):779–781. doi: 10.1042/bst0180779. [DOI] [PubMed] [Google Scholar]
- Ståhlberg D., Angelin B., Einarsson K. Effects of treatment with clofibrate, bezafibrate, and ciprofibrate on the metabolism of cholesterol in rat liver microsomes. J Lipid Res. 1989 Jul;30(7):953–958. [PubMed] [Google Scholar]
- Sánchez R. M., Alegret M., Adzet T., Merlos M., Laguna J. C. Differential inhibition of long-chain acyl-CoA hydrolases by hypolipidemic drugs in vitro. Biochem Pharmacol. 1992 Feb 4;43(3):639–644. doi: 10.1016/0006-2952(92)90589-b. [DOI] [PubMed] [Google Scholar]
- Sánchez R. M., Viñals M., Alegret M., Vázquez M., Adzet T., Merlos M., Laguna J. C. Fibrates modify rat hepatic fatty acid chain elongation and desaturation in vitro. Biochem Pharmacol. 1993 Nov 17;46(10):1791–1796. doi: 10.1016/0006-2952(93)90584-j. [DOI] [PubMed] [Google Scholar]
- Sánchez R. M., Viñals M., Alegret M., Vázquez M., Adzet T., Merlos M., Laguna J. C. Inhibition of rat liver microsomal fatty acid chain elongation by gemfibrozil in vitro. FEBS Lett. 1992 Mar 23;300(1):89–92. doi: 10.1016/0014-5793(92)80170-l. [DOI] [PubMed] [Google Scholar]
- Todd P. A., Ward A. Gemfibrozil. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in dyslipidaemia. Drugs. 1988 Sep;36(3):314–339. doi: 10.2165/00003495-198836030-00004. [DOI] [PubMed] [Google Scholar]
- Vance J. E., Vance D. E. The assembly of lipids into lipoproteins during secretion. Experientia. 1990 Jun 15;46(6):560–569. doi: 10.1007/BF01939694. [DOI] [PubMed] [Google Scholar]
- Vázquez M., Alegret M., Adzet T., Merlos M., Laguna J. C. Gemfibrozil modifies acyl composition of liver microsomal phospholipids from guinea-pigs without promoting peroxisomal proliferation. Biochem Pharmacol. 1993 Oct 19;46(8):1515–1518. doi: 10.1016/0006-2952(93)90121-c. [DOI] [PubMed] [Google Scholar]
- Wang C. S., Hartsuck J., McConathy W. J. Structure and functional properties of lipoprotein lipase. Biochim Biophys Acta. 1992 Jan 3;1123(1):1–17. doi: 10.1016/0005-2760(92)90165-r. [DOI] [PubMed] [Google Scholar]