Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Oct;116(3):2113–2119. doi: 10.1111/j.1476-5381.1995.tb16419.x

Action of adenosine receptor antagonists on hypoxia-induced effects in the rat hippocampus in vitro.

M D Croning 1, T S Zetterström 1, D G Grahame-Smith 1, N R Newberry 1
PMCID: PMC1908946  PMID: 8640353

Abstract

1. We have studied three hypoxia-induced phenomena in the CA1 stratum pyramidale of the rat hippocampal slice: (a) the increase in extracellular potassium ion concentration ([K+]e) measured with ion-sensitive microelectrodes, (b) the intracellularly-recorded pyramidal cell hyperpolarization and (c) the extracellularly-recorded depression of the synaptically-evoked field potential recorded in stratum pyramidale. 2. The extracellular potassium ion concentration ([K+]e) rose from 3 mM to 4.1-4.4 mM at a time when the pyramidal cells hyperpolarized by about 6 mV and neurotransmission was virtually abolished. 3. Presumed glial cells depolarized in response to hypoxia. The shape and time course of this response was remarkably similar to the rise in [K+]e so induced. This is consistent with findings that glial cell membrane potential is dependent on transmembrane K+ gradient. 4. We investigated the effects of theophylline (100 microM) and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 0.1 microM) on these effects. We have found that these compounds attenuated by about half the hypoxia-induced increase in [K+]e; however, they did not reduce the hypoxia-induced hyperpolarization. We have confirmed that they dramatically reduced the suppression of excitatory transmission caused by the hypoxia. We conclude that adenosine A1 receptors may be involved in the alteration of K+ homeostasis in the hippocampal slice during hypoxia.

Full text

PDF
2113

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN P. Interhippocampal impulses. II. Apical dendritic activation of CAI neurons. Acta Physiol Scand. 1960 Mar 18;48:178–208. doi: 10.1111/j.1748-1716.1960.tb01858.x. [DOI] [PubMed] [Google Scholar]
  2. Alzheimer C., Sutor B., ten Bruggencate G. Transient and selective blockade of adenosine A1-receptors by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) causes sustained epileptiform activity in hippocampal CA3 neurons of guinea pigs. Neurosci Lett. 1989 Apr 24;99(1-2):107–112. doi: 10.1016/0304-3940(89)90273-5. [DOI] [PubMed] [Google Scholar]
  3. Ammann D., Chao P. S., Simon W. Valinomycin-based K+ selective microelectrodes with low electrical membrane resistance. Neurosci Lett. 1987 Feb 24;74(2):221–226. doi: 10.1016/0304-3940(87)90153-4. [DOI] [PubMed] [Google Scholar]
  4. Bruns R. F., Lu G. H., Pugsley T. A. Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol. 1986 Apr;29(4):331–346. [PubMed] [Google Scholar]
  5. Dunwiddie T. V. The physiological role of adenosine in the central nervous system. Int Rev Neurobiol. 1985;27:63–139. doi: 10.1016/s0074-7742(08)60556-5. [DOI] [PubMed] [Google Scholar]
  6. Ekholm A., Asplund B., Siesjö B. K. Perturbation of cellular energy state in complete ischemia: relationship to dissipative ion fluxes. Exp Brain Res. 1992;90(1):47–53. doi: 10.1007/BF00229255. [DOI] [PubMed] [Google Scholar]
  7. Fastbom J., Pazos A., Palacios J. M. The distribution of adenosine A1 receptors and 5'-nucleotidase in the brain of some commonly used experimental animals. Neuroscience. 1987 Sep;22(3):813–826. doi: 10.1016/0306-4522(87)92961-7. [DOI] [PubMed] [Google Scholar]
  8. Fowler J. C. Adenosine antagonists delay hypoxia-induced depression of neuronal activity in hippocampal brain slice. Brain Res. 1989 Jun 26;490(2):378–384. doi: 10.1016/0006-8993(89)90258-8. [DOI] [PubMed] [Google Scholar]
  9. Fredholm B. B., Abbracchio M. P., Burnstock G., Daly J. W., Harden T. K., Jacobson K. A., Leff P., Williams M. Nomenclature and classification of purinoceptors. Pharmacol Rev. 1994 Jun;46(2):143–156. [PMC free article] [PubMed] [Google Scholar]
  10. Fredholm B. B., Dunwiddie T. V., Bergman B., Lindström K. Levels of adenosine and adenine nucleotides in slices of rat hippocampus. Brain Res. 1984 Mar 12;295(1):127–136. doi: 10.1016/0006-8993(84)90823-0. [DOI] [PubMed] [Google Scholar]
  11. Fujiwara N., Higashi H., Shimoji K., Yoshimura M. Effects of hypoxia on rat hippocampal neurones in vitro. J Physiol. 1987 Mar;384:131–151. doi: 10.1113/jphysiol.1987.sp016447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greene R. W., Haas H. L. Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices. J Physiol. 1985 Sep;366:119–127. doi: 10.1113/jphysiol.1985.sp015788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hansen A. J. Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985 Jan;65(1):101–148. doi: 10.1152/physrev.1985.65.1.101. [DOI] [PubMed] [Google Scholar]
  14. Hansen A. J. Extracellular potassium concentration in juvenile and adult rat brain cortex during anoxia. Acta Physiol Scand. 1977 Apr;99(4):412–420. doi: 10.1111/j.1748-1716.1977.tb10394.x. [DOI] [PubMed] [Google Scholar]
  15. Hansen A. J., Hounsgaard J., Jahnsen H. Anoxia increases potassium conductance in hippocampal nerve cells. Acta Physiol Scand. 1982 Jul;115(3):301–310. doi: 10.1111/j.1748-1716.1982.tb07082.x. [DOI] [PubMed] [Google Scholar]
  16. Hershkowitz N., Katchman A. N., Veregge S. Site of synaptic depression during hypoxia: a patch-clamp analysis. J Neurophysiol. 1993 Feb;69(2):432–441. doi: 10.1152/jn.1993.69.2.432. [DOI] [PubMed] [Google Scholar]
  17. Jing J., Aitken P. G., Somjen G. G. Role of calcium channels in spreading depression in rat hippocampal slices. Brain Res. 1993 Feb 26;604(1-2):251–259. doi: 10.1016/0006-8993(93)90376-x. [DOI] [PubMed] [Google Scholar]
  18. Katchman A. N., Hershkowitz N. Adenosine antagonists prevent hypoxia-induced depression of excitatory but not inhibitory synaptic currents. Neurosci Lett. 1993 Sep 3;159(1-2):123–126. doi: 10.1016/0304-3940(93)90814-2. [DOI] [PubMed] [Google Scholar]
  19. Kuan C. J., Herzer W. A., Jackson E. K. Cardiovascular and renal effects of blocking A1 adenosine receptors. J Cardiovasc Pharmacol. 1993 May;21(5):822–828. doi: 10.1097/00005344-199305000-00020. [DOI] [PubMed] [Google Scholar]
  20. Kuffler S. W. Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc R Soc Lond B Biol Sci. 1967 Jun 6;168(1010):1–21. doi: 10.1098/rspb.1967.0047. [DOI] [PubMed] [Google Scholar]
  21. Leblond J., Krnjevic K. Hypoxic changes in hippocampal neurons. J Neurophysiol. 1989 Jul;62(1):1–14. doi: 10.1152/jn.1989.62.1.1. [DOI] [PubMed] [Google Scholar]
  22. Lipton P., Whittingham T. S. Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus. J Physiol. 1982 Apr;325:51–65. doi: 10.1113/jphysiol.1982.sp014135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lohse M. J., Klotz K. N., Lindenborn-Fotinos J., Reddington M., Schwabe U., Olsson R. A. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX)--a selective high affinity antagonist radioligand for A1 adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol. 1987 Aug;336(2):204–210. doi: 10.1007/BF00165806. [DOI] [PubMed] [Google Scholar]
  24. Manzoni O. J., Manabe T., Nicoll R. A. Release of adenosine by activation of NMDA receptors in the hippocampus. Science. 1994 Sep 30;265(5181):2098–2101. doi: 10.1126/science.7916485. [DOI] [PubMed] [Google Scholar]
  25. Martin R. L., Lloyd H. G., Cowan A. I. The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci. 1994 Jun;17(6):251–257. doi: 10.1016/0166-2236(94)90008-6. [DOI] [PubMed] [Google Scholar]
  26. Munakata M., Akaike N. Theophylline affects three different potassium currents in dissociated rat cortical neurones. J Physiol. 1993 Nov;471:599–616. doi: 10.1113/jphysiol.1993.sp019918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pulsinelli W. A., Brierley J. B. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke. 1979 May-Jun;10(3):267–272. doi: 10.1161/01.str.10.3.267. [DOI] [PubMed] [Google Scholar]
  28. Reddington M., Lee K. S., Schubert P. An A1-adenosine receptor, characterized by [3H] cyclohexyladenosine binding, mediates the depression of evoked potentials in a rat hippocampal slice preparation. Neurosci Lett. 1982 Mar 5;28(3):275–279. doi: 10.1016/0304-3940(82)90070-2. [DOI] [PubMed] [Google Scholar]
  29. Reid K. H., Edmonds H. L., Jr, Schurr A., Tseng M. T., West C. A. Pitfalls in the use of brain slices. Prog Neurobiol. 1988;31(1):1–18. doi: 10.1016/0301-0082(88)90020-2. [DOI] [PubMed] [Google Scholar]
  30. Roberts E. L., Jr, Sick T. J. Recovery of synaptic transmission predicted from extracellular K+ undershoots following brief anoxia in hippocampal slices. Brain Res. 1987 Jan 27;402(1):178–181. doi: 10.1016/0006-8993(87)91064-x. [DOI] [PubMed] [Google Scholar]
  31. Spuler A., Grafe P. Adenosine, 'pertussis-sensitive' G-proteins, and K+ conductance in central mammalian neurones under energy deprivation. Neurosci Lett. 1989 Apr 10;98(3):280–284. doi: 10.1016/0304-3940(89)90414-x. [DOI] [PubMed] [Google Scholar]
  32. Stone T. W. Physiological roles for adenosine and adenosine 5'-triphosphate in the nervous system. Neuroscience. 1981;6(4):523–555. doi: 10.1016/0306-4522(81)90145-7. [DOI] [PubMed] [Google Scholar]
  33. Wu L. G., Saggau P. Adenosine inhibits evoked synaptic transmission primarily by reducing presynaptic calcium influx in area CA1 of hippocampus. Neuron. 1994 May;12(5):1139–1148. doi: 10.1016/0896-6273(94)90321-2. [DOI] [PubMed] [Google Scholar]
  34. Xu Z. C., Pulsinelli W. A. Responses of CA1 pyramidal neurons in rat hippocampus to transient forebrain ischemia: an in vivo intracellular recording study. Neurosci Lett. 1994 Apr 25;171(1-2):187–191. doi: 10.1016/0304-3940(94)90636-x. [DOI] [PubMed] [Google Scholar]
  35. Young J. N., Somjen G. G. Suppression of presynaptic calcium currents by hypoxia in hippocampal tissue slices. Brain Res. 1992 Feb 21;573(1):70–76. doi: 10.1016/0006-8993(92)90114-o. [DOI] [PubMed] [Google Scholar]
  36. Zetterström T. S., Vaughan-Jones R. D., Grahame-Smith D. G. A short period of hypoxia produces a rapid and transient rise in [K+]e in rat hippocampus in vivo which is inhibited by certain K(+)-channel blocking agents. Neuroscience. 1995 Aug;67(4):815–821. doi: 10.1016/0306-4522(95)00107-t. [DOI] [PubMed] [Google Scholar]
  37. Zetterström T., Vernet L., Ungerstedt U., Tossman U., Jonzon B., Fredholm B. B. Purine levels in the intact rat brain. Studies with an implanted perfused hollow fibre. Neurosci Lett. 1982 Apr 16;29(2):111–115. doi: 10.1016/0304-3940(82)90338-x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES