Abstract
1. The effects of SR 33589 and amiodarone on the cardiac beta-adrenoceptor were studied in vitro and after chronic treatment by means of [125I]-(-)-iodocyanopindolol ([125I]-(-)-CYP) binding and measurement of adenylate cyclase activity. 2. Binding of [125I]-(-)-CYP was inhibited in a dose-dependent manner by SR 33589 (IC50=1.8 +/- 0.4 microM, nH=0.93 +/- 0.06) and amiodarone (IC50=8.7 +/- 2.0 microM, nH=9.2 +/- 0.03). Saturation binding experiments indicated a non-competitive interaction such that SR 33589 (1 and 3 microM) and amiodarone (5 and 10 microM) reduced the Bmax of [125I]-(-)-CYP binding without any effect on the KD. Kinetic studies showed that the rate of association of [125I]-(-)-CYP was unchanged while the rate of dissociation was increased both in the presence of SR 33589 (10 microM) and amiodarone (30 microM).3. Under the same conditions, the receptor stimulated adenylate cyclase activity was inhibited in a dose-dependent, but non-competitive manner, by SR 33589 (isoprenaline-, glucagon- and secretin-stimulated enzyme inhibited 50% at 6.8 +/- 0.6 microM, 31 +/- 10 microM and 12 +/- 3 microM, respectively) while the basal, GTP- and GPP(NH)p-stimulated enzyme was inhibited by 5-10% and the NaF and forskolin-stimulated enzyme by 50% at 500 microM. Amiodarone exhibited a similar pattern of inhibition. 4. After chronic oral treatment (50, 100, 150 mg kg(-1) per day, 14 days), both SR 33589 and amiodarone produced a dose-dependent decrease in Bmax without any effect on KD as determined from [125I]-(-)-CYP saturation experiments and a decrease of the isoprenaline- and glucagon-stimulated adenylate cyclase activity without any effect on basal enzyme activity or activity when stimulated by agents acting directly on regulatory catalytic units. 5. Unlike amiodarone, SR 33589 does not contain iodine substituents. Plasma levels of T3, T4, and rT3 were changed after SR 33589 treatment except a decrease in T4 level at the highest dose whilst the T4 T3 ratio and the level of rT3 were dose-dependently increased by amiodarone treatment. 6. In vitro, SR 33589 and amiodarone were characterized as non-competitive beta-adrenoceptor antagonists. Chronic treatment led to a down-regulation of the beta-adrenoceptor; the down-regulation cannot be attributed to an indirect effect mediated by the thyroid hormones. To reconcile these opposing observations, we propose that SR 33589 and amiodarone interact with the beta-adrenoceptor at a site close to the intracellular loops which are involved in the coupling with Gs and contain the phosphorylable sites.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bacq Z. M., Blakeley A. G., Summers R. J. The effects of amiodarone, an alpha and beta receptor antiagonist, on adrenergic transmission in the cat spleen. Biochem Pharmacol. 1976 May 15;25(10):1195–1199. doi: 10.1016/0006-2952(76)90368-3. [DOI] [PubMed] [Google Scholar]
- Barak L. S., Tiberi M., Freedman N. J., Kwatra M. M., Lefkowitz R. J., Caron M. G. A highly conserved tyrosine residue in G protein-coupled receptors is required for agonist-mediated beta 2-adrenergic receptor sequestration. J Biol Chem. 1994 Jan 28;269(4):2790–2795. [PubMed] [Google Scholar]
- Bauthier J., Broekhuysen J., Charlier R., Richard J. Nature of the inhibition by amiodarone of isoproterenol-induced tachycardia in the dog. Arch Int Pharmacodyn Ther. 1976 Jan;219(1):45–51. [PubMed] [Google Scholar]
- Bjørnerheim R., Frøysaker T., Hansson V. Effects of chronic amiodarone treatment on human myocardial beta adrenoceptor density and adenylate cyclase response. Cardiovasc Res. 1991 Jun;25(6):503–509. doi: 10.1093/cvr/25.6.503. [DOI] [PubMed] [Google Scholar]
- Burbach J. P., Meijer O. C. The structure of neuropeptide receptors. Eur J Pharmacol. 1992 Sep 1;227(1):1–18. doi: 10.1016/0922-4106(92)90136-j. [DOI] [PubMed] [Google Scholar]
- Ceppi J. A., Zaninovich A. A. Effects of amiodarone on 5'-deiodination of thyroxine to tri-iodothyronine in rat myocardium. J Endocrinol. 1989 Jun;121(3):431–434. doi: 10.1677/joe.0.1210431. [DOI] [PubMed] [Google Scholar]
- Charlier R. Cardiac actions in the dog of a new antagonist of adrenergic excitation which does not produce competitive blockade of adrenoceptors. Br J Pharmacol. 1970 Aug;39(4):668–674. doi: 10.1111/j.1476-5381.1970.tb09892.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chatelain P., Laruel R., Vic P., Brotelle R. Differential effects of amiodarone and propranolol on lipid dynamics and enzymatic activities in cardiac sarcolemmal membranes. Biochem Pharmacol. 1989 Apr 15;38(8):1231–1239. doi: 10.1016/0006-2952(89)90328-6. [DOI] [PubMed] [Google Scholar]
- Chatelain P., Robberecht P., De Neef P., Deschodt-Lanckman M., König W., Christophe J. Secretin and VIP-stimulated adenylate cyclase from rat heart. I. General properties and structural requirements for enzyme activation. Pflugers Arch. 1980 Dec;389(1):21–27. doi: 10.1007/BF00587924. [DOI] [PubMed] [Google Scholar]
- Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
- Cohen-Armon M., Schreiber G., Sokolovsky M. Interaction of the antiarrhythmic drug amiodarone with the muscarinic receptor in rat heart and brain. J Cardiovasc Pharmacol. 1984 Nov-Dec;6(6):1148–1155. [PubMed] [Google Scholar]
- Colvin R. A., Oibo J. A., Allen R. A., Tyler L., Leek D. Interaction of amiodarone and desethylamiodarone with the cardiac muscarinic receptor in vitro. J Mol Cell Cardiol. 1989 May;21(5):453–460. doi: 10.1016/0022-2828(89)90785-2. [DOI] [PubMed] [Google Scholar]
- Dohlman H. G., Thorner J., Caron M. G., Lefkowitz R. J. Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem. 1991;60:653–688. doi: 10.1146/annurev.bi.60.070191.003253. [DOI] [PubMed] [Google Scholar]
- Gagnol J. P., Devos C., Clinet M., Nokin P. Amiodarone. Biochemical aspects and haemodynamic effects. Drugs. 1985 Mar;29 (Suppl 3):1–10. doi: 10.2165/00003495-198500293-00002. [DOI] [PubMed] [Google Scholar]
- Gill J., Heel R. C., Fitton A. Amiodarone. An overview of its pharmacological properties, and review of its therapeutic use in cardiac arrhythmias. Drugs. 1992 Jan;43(1):69–110. doi: 10.2165/00003495-199243010-00007. [DOI] [PubMed] [Google Scholar]
- Hafner D., Heinen E., Noack E. Mathematical analysis of concentration-response relationships. Method for the evaluation of the ED50 and the number of binding sites per receptor molecule using the logit transformation. Arzneimittelforschung. 1977;27(10):1871–1873. [PubMed] [Google Scholar]
- Hausdorff W. P., Campbell P. T., Ostrowski J., Yu S. S., Caron M. G., Lefkowitz R. J. A small region of the beta-adrenergic receptor is selectively involved in its rapid regulation. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):2979–2983. doi: 10.1073/pnas.88.8.2979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herbette L. G., Trumbore M., Chester D. W., Katz A. M. Possible molecular basis for the pharmacokinetics and pharmacodynamics of three membrane-active drugs: propranolol, nimodipine and amiodarone. J Mol Cell Cardiol. 1988 May;20(5):373–378. doi: 10.1016/s0022-2828(88)80128-7. [DOI] [PubMed] [Google Scholar]
- Hoyer D., Engel G., Berthold R. Binding characteristics of (+)-, (+/-)- and (-)-[125iodo] cyanopindolol to guinea-pig left ventricle membranes. Naunyn Schmiedebergs Arch Pharmacol. 1982 Mar;318(4):319–329. doi: 10.1007/BF00501172. [DOI] [PubMed] [Google Scholar]
- Jendrasiak G. L., McIntosh T. J., Ribeiro A., Porter R. S. Amiodarone-liposome interaction: a multinuclear NMR and X-ray diffraction study. Biochim Biophys Acta. 1990 May 9;1024(1):19–31. doi: 10.1016/0005-2736(90)90204-2. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lubbe W. F., McFadyen M. L., Muller C. A., Worthington M., Opie L. H. Protective action of amiodarone against ventricular fibrillation in the isolated perfused rat heart. Am J Cardiol. 1979 Mar;43(3):533–540. doi: 10.1016/0002-9149(79)90010-9. [DOI] [PubMed] [Google Scholar]
- Lubbe W. F., Nguyen T., West E. J. Modulation of myocardial cyclic AMP and vulnerability to fibrillation in the rat heart. Fed Proc. 1983 May 15;42(8):2460–2464. [PubMed] [Google Scholar]
- Maisel A. S., Motulsky H. J., Insel P. A. Life cycles of cardiac alpha 1- and beta-adrenergic receptors. Biochem Pharmacol. 1987 Jan 1;36(1):1–6. doi: 10.1016/0006-2952(87)90375-3. [DOI] [PubMed] [Google Scholar]
- Marcus F. I., Fontaine G. H., Frank R., Grosgogeat Y. Clinical pharmacology and therapeutic applications of the antiarrhythmic agent amiodarone. Am Heart J. 1981 Apr;101(4):480–493. doi: 10.1016/0002-8703(81)90140-x. [DOI] [PubMed] [Google Scholar]
- Mason R. P., Rhodes D. G., Herbette L. G. Reevaluating equilibrium and kinetic binding parameters for lipophilic drugs based on a structural model for drug interaction with biological membranes. J Med Chem. 1991 Mar;34(3):869–877. doi: 10.1021/jm00107a001. [DOI] [PubMed] [Google Scholar]
- Nokin P., Clinet M., Schoenfeld P. Cardiac beta-adrenoceptor modulation by amiodarone. Biochem Pharmacol. 1983 Sep 1;32(17):2473–2477. doi: 10.1016/0006-2952(83)90004-7. [DOI] [PubMed] [Google Scholar]
- Nokin P., Clinet M., Swillens S., Delisée C., Meysmans L., Chatelain P. Allosteric modulation of [3H]nitrendipine binding to cardiac and cerebral cortex membranes by amiodarone. J Cardiovasc Pharmacol. 1986 Sep-Oct;8(5):1051–1057. doi: 10.1097/00005344-198609000-00025. [DOI] [PubMed] [Google Scholar]
- Perret G., Yin Y. L., Nicolas P., Pussard E., Vassy R., Uzzan B., Berdeaux A. Amiodarone decreases cardiac beta-adrenoceptors through an antagonistic effect on 3,5,3' triiodothyronine. J Cardiovasc Pharmacol. 1992 Apr;19(4):473–478. doi: 10.1097/00005344-199204000-00001. [DOI] [PubMed] [Google Scholar]
- Perret G., Yin Y. L., Nicolas P., Vassy R., Uzzan B., Louchahi M. In vivo effects of macrolides on thyroid hormone serum levels and on hepatic type 1 5'-deiodinase in rat. A comparative study with amiodarone, phenobarbital and propranolol. Fundam Clin Pharmacol. 1991;5(7):583–593. doi: 10.1111/j.1472-8206.1991.tb00747.x. [DOI] [PubMed] [Google Scholar]
- Plomp T. A., Wiersinga W. M., Maes R. A. Tissue distribution of amiodarone and desethylamiodarone in rats after repeated oral administration of various amiodarone dosages. Arzneimittelforschung. 1985;35(12):1805–1810. [PubMed] [Google Scholar]
- Polster P., Broekhuysen J. The adrenergic antagonism of amiodarone. Biochem Pharmacol. 1976 Jan 15;25(2):131–134. doi: 10.1016/0006-2952(76)90279-3. [DOI] [PubMed] [Google Scholar]
- Pourbaix S., Berger Y., Desager J. P., Pacco M., Harvengt C. Absolute bioavailability of amiodarone in normal subjects. Clin Pharmacol Ther. 1985 Feb;37(2):118–123. doi: 10.1038/clpt.1985.22. [DOI] [PubMed] [Google Scholar]
- Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
- Sheldon R. S., Hill R. J., Cannon N. J., Duff H. J. Amiodarone: biochemical evidence for binding to a receptor for class I drugs associated with the rat cardiac sodium channel. Circ Res. 1989 Aug;65(2):477–482. doi: 10.1161/01.res.65.2.477. [DOI] [PubMed] [Google Scholar]
- Singh B. N., Vaughan Williams E. M. The effect of amiodarone, a new anti-anginal drug, on cardiac muscle. Br J Pharmacol. 1970 Aug;39(4):657–667. doi: 10.1111/j.1476-5381.1970.tb09891.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trumbore M., Chester D. W., Moring J., Rhodes D., Herbette L. G. Structure and location of amiodarone in a membrane bilayer as determined by molecular mechanics and quantitative x-ray diffraction. Biophys J. 1988 Sep;54(3):535–543. doi: 10.1016/S0006-3495(88)82986-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venkatesh N., Padbury J. F., Singh B. N. Effects of amiodarone and desethylamiodarone on rabbit myocardial beta-adrenoceptors and serum thyroid hormones--absence of relationship to serum and myocardial drug concentrations. J Cardiovasc Pharmacol. 1986 Sep-Oct;8(5):989–997. doi: 10.1097/00005344-198609000-00016. [DOI] [PubMed] [Google Scholar]
- Wagner J. A., Weisman H. F., Levine J. H., Snowman A. M., Snyder S. H. Differential effects of amiodarone and desethylamiodarone on calcium antagonist receptors. J Cardiovasc Pharmacol. 1990 Mar;15(3):501–507. doi: 10.1097/00005344-199003000-00022. [DOI] [PubMed] [Google Scholar]
- Wiegand V., Wagner G., Kreuzer H. Hypothyroid-like effect of amiodarone in the ventricular myocardium of the rat. Basic Res Cardiol. 1986 Sep-Oct;81(5):482–488. doi: 10.1007/BF01907754. [DOI] [PubMed] [Google Scholar]
- Yin Y. L., Perret G. Y., Nicolas P., Vassy R., Uzzan B., Tod M. In vivo effects of amiodarone on cardiac beta-adrenoceptor density and heart rate require thyroid hormones. J Cardiovasc Pharmacol. 1992 Apr;19(4):541–545. doi: 10.1097/00005344-199204000-00010. [DOI] [PubMed] [Google Scholar]
