Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Oct;116(3):2017–2026. doi: 10.1111/j.1476-5381.1995.tb16406.x

Study of NO and VIP as non-adrenergic non-cholinergic neurotransmitters in the pig gastric fundus.

R A Lefebvre 1, G J Smits 1, J P Timmermans 1
PMCID: PMC1908950  PMID: 8640340

Abstract

1. The contribution of nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) to non-adrenergic non-cholinergic (NANC) relaxations in the pig gastric fundus was investigated. 2. Circular and longitudinal muscle strips were mounted for isotonic registration in the presence of atropine and guanethidine; tone was raised with 5-hydroxytryptamine. Electrical field stimulation with 10 s trains at 5 min intervals induced responses were abolished by tetrodotoxin. 3. The short-lasting as well as the sustained electrically induced NANC relaxations were significantly reduced by NG-nitro-L-arginine methyl ester (L-NAME). Pretreatment with L-arginine but not D-arginine, prevented the inhibitory effect of L-NAME except for sustained relaxations in the longitudinal muscle strips. 4. Sodium nitroprusside, forskolin, zaprinast and 3-isobutyl-l-methylxanthine induced concentration-dependent relaxations. Exogenous NO mimicked the short-lasting electrically induced relaxations, while endogenous VIP evoked sustained relaxations. The responses to exogenous NO and VIP were not influenced by tetrodotoxin and L-NAME. 5. alpha-Chymotrypsin abolished the responses to exogenous VIP but only moderately reduced NANC relaxations induced by continuous electrical stimulation. Zaprinast potentiated the relaxant responses to sodium nitroprusside and increased the duration of the NANC relaxations induced by electrical stimulation with 10 s trains in circular muscle strips but not in longitudinal muscle strips. 6. The cyclic GMP and cyclic AMP response to electrical stimulation, NO and VIP was measured in circular muscle strips. Short-lasting as well as sustained electrical field stimulation induced an approximately 1.5 fold increase in cyclic GMP content, while NO induced nearly a 40 fold increase. An increase in cyclic AMP content was obtained only with sustained electrical field stimulation. 7. Immunocytochemistry for NO synthase (NOS) revealed immunoreactive neuronal cell bodies in the submucous and myenteric plexuses and nerve fibres in both the circular and longitudinal muscle layer; double-labelling for NOS and VIP showed that VIP coexists in a major part of the intrinsic neurones. NADPH diaphorase-histochemistry showed the same pattern of nitrergic neurones and nerves as NOS-immunocytochemistry. 8. It is concluded that a cyclic GMP- and a cyclic AMP-dependent pathway for relaxation is present in both the circular and longitudinal muscle layer of the pig gastric fundus. NO appears to contribute to short-lasting as well as sustained NANC relaxations. A peptide, possibly VIP, may be involved during sustained stimulation at lower frequencies of stimulation.

Full text

PDF
2017

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamsson H. Non-adrenergic non-cholinergic nervous control of gastrointestinal motility patterns. Arch Int Pharmacodyn Ther. 1986 Apr;280(2 Suppl):50–61. [PubMed] [Google Scholar]
  2. Aimi Y., Kimura H., Kinoshita T., Minami Y., Fujimura M., Vincent S. R. Histochemical localization of nitric oxide synthase in rat enteric nervous system. Neuroscience. 1993 Mar;53(2):553–560. doi: 10.1016/0306-4522(93)90220-a. [DOI] [PubMed] [Google Scholar]
  3. Barbier A. J., Lefebvre R. A. Effect of 3-isobutyl-1-methylxanthine and zaprinast on non-adrenergic non-cholinergic relaxation in the rat gastric fundus. Eur J Pharmacol. 1992 Jan 21;210(3):315–323. doi: 10.1016/0014-2999(92)90421-y. [DOI] [PubMed] [Google Scholar]
  4. Barbier A. J., Lefebvre R. A. Involvement of the L-arginine: nitric oxide pathway in nonadrenergic noncholinergic relaxation of the cat gastric fundus. J Pharmacol Exp Ther. 1993 Jul;266(1):172–178. [PubMed] [Google Scholar]
  5. Barbier A. J., Lefebvre R. A. Relaxant influence of phosphodiesterase inhibitors in the cat gastric fundus. Eur J Pharmacol. 1995 Mar 24;276(1-2):41–47. doi: 10.1016/0014-2999(95)00009-a. [DOI] [PubMed] [Google Scholar]
  6. Barbiers M., Timmermans J. P., Scheuermann D. W., Adriaensen D., Mayer B., De Groodt-Lasseel M. H. Distribution and morphological features of nitrergic neurons in the porcine large intestine. Histochemistry. 1993 Jul;100(1):27–34. doi: 10.1007/BF00268875. [DOI] [PubMed] [Google Scholar]
  7. Bartfai T., Iverfeldt K., Fisone G., Serfözö P. Regulation of the release of coexisting neurotransmitters. Annu Rev Pharmacol Toxicol. 1988;28:285–310. doi: 10.1146/annurev.pa.28.040188.001441. [DOI] [PubMed] [Google Scholar]
  8. Beavo J. A., Reifsnyder D. H. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci. 1990 Apr;11(4):150–155. doi: 10.1016/0165-6147(90)90066-H. [DOI] [PubMed] [Google Scholar]
  9. Belai A., Schmidt H. H., Hoyle C. H., Hassall C. J., Saffrey M. J., Moss J., Förstermann U., Murad F., Burnstock G. Colocalization of nitric oxide synthase and NADPH-diaphorase in the myenteric plexus of the rat gut. Neurosci Lett. 1992 Aug 31;143(1-2):60–64. doi: 10.1016/0304-3940(92)90233-w. [DOI] [PubMed] [Google Scholar]
  10. Bitar K. N., Makhlouf G. M. Relaxation of isolated gastric smooth muscle cells by vasoactive intestinal peptide. Science. 1982 Apr 30;216(4545):531–533. doi: 10.1126/science.6176025. [DOI] [PubMed] [Google Scholar]
  11. Boeckxstaens G. E., Pelckmans P. A., Bogers J. J., Bult H., De Man J. G., Oosterbosch L., Herman A. G., Van Maercke Y. M. Release of nitric oxide upon stimulation of nonadrenergic noncholinergic nerves in the rat gastric fundus. J Pharmacol Exp Ther. 1991 Feb;256(2):441–447. [PubMed] [Google Scholar]
  12. Boeckxstaens G. E., Pelckmans P. A., De Man J. G., Bult H., Herman A. G., Van Maercke Y. M. Evidence for a differential release of nitric oxide and vasoactive intestinal polypeptide by nonadrenergic noncholinergic nerves in the rat gastric fundus. Arch Int Pharmacodyn Ther. 1992 Jul-Aug;318:107–115. [PubMed] [Google Scholar]
  13. Burnstock G. The fifth Heymans memorial lecture-Ghent, February 17, 1990. Co-transmission. Arch Int Pharmacodyn Ther. 1990 Mar-Apr;304:7–33. [PubMed] [Google Scholar]
  14. Costa M., Furness J. B., Smith I. J., Davies B., Oliver J. An immunohistochemical study of the projections of somatostatin-containing neurons in the guinea-pig intestine. Neuroscience. 1980;5(5):841–852. doi: 10.1016/0306-4522(80)90153-0. [DOI] [PubMed] [Google Scholar]
  15. D'Amato M., Currò D., Montuschi P. Evidence for dual components in the non-adrenergic non-cholinergic relaxation in the rat gastric fundus: role of endogenous nitric oxide and vasoactive intestinal polypeptide. J Auton Nerv Syst. 1992 Mar;37(3):175–186. doi: 10.1016/0165-1838(92)90039-j. [DOI] [PubMed] [Google Scholar]
  16. Dawson T. M., Bredt D. S., Fotuhi M., Hwang P. M., Snyder S. H. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7797–7801. doi: 10.1073/pnas.88.17.7797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. De Beurme F. A., Lefebvre R. A. Influence of alpha-chymotrypsin and trypsin on the non-adrenergic non-cholinergic relaxation in the rat gastric fundus. Br J Pharmacol. 1987 May;91(1):171–177. doi: 10.1111/j.1476-5381.1987.tb08996.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Desai K. M., Warner T. D., Bishop A. E., Polak J. M., Vane J. R. Nitric oxide, and not vasoactive intestinal peptide, as the main neurotransmitter of vagally induced relaxation of the guinea pig stomach. Br J Pharmacol. 1994 Dec;113(4):1197–1202. doi: 10.1111/j.1476-5381.1994.tb17124.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Forster E. R., Southam E. The intrinsic and vagal extrinsic innervation of the rat stomach contains nitric oxide synthase. Neuroreport. 1993 Mar;4(3):275–278. doi: 10.1097/00001756-199303000-00012. [DOI] [PubMed] [Google Scholar]
  20. Fujimoto S., Matsuda T. Effects of pimobendan, a cardiotonic and vasodilating agent with phosphodiesterase inhibiting properties, on isolated arteries and veins of rats. J Pharmacol Exp Ther. 1990 Mar;252(3):1304–1311. [PubMed] [Google Scholar]
  21. Furness J. B., Costa M., Walsh J. H. Evidence for and significance of the projection of VIP neurons from the myenteric plexus to the taenia coli in the guinea pig. Gastroenterology. 1981 Jun;80(6):1557–1561. [PubMed] [Google Scholar]
  22. García-Pascual A., Triguero D. Relaxation mechanisms induced by stimulation of nerves and by nitric oxide in sheep urethral muscle. J Physiol. 1994 Apr 15;476(2):333–347. doi: 10.1113/jphysiol.1994.sp020135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gilfoil T. M., Kelly C. A. Mechanism of action of chymotrypsin on plain muscle. Br J Pharmacol Chemother. 1966 May;27(1):120–130. doi: 10.1111/j.1476-5381.1966.tb01647.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gozes I., Brenneman D. E. VIP: molecular biology and neurobiological function. Mol Neurobiol. 1989 Winter;3(4):201–236. doi: 10.1007/BF02740606. [DOI] [PubMed] [Google Scholar]
  25. Grider J. R. Interplay of VIP and nitric oxide in regulation of the descending relaxation phase of peristalsis. Am J Physiol. 1993 Feb;264(2 Pt 1):G334–G340. doi: 10.1152/ajpgi.1993.264.2.G334. [DOI] [PubMed] [Google Scholar]
  26. Grider J. R., Murthy K. S., Jin J. G., Makhlouf G. M. Stimulation of nitric oxide from muscle cells by VIP: prejunctional enhancement of VIP release. Am J Physiol. 1992 Apr;262(4 Pt 1):G774–G778. doi: 10.1152/ajpgi.1992.262.4.G774. [DOI] [PubMed] [Google Scholar]
  27. Grundy D., Gharib-Naseri M. K., Hutson D. Role of nitric oxide and vasoactive intestinal polypeptide in vagally mediated relaxation of the gastric corpus in the anaesthetized ferret. J Auton Nerv Syst. 1993 Jun;43(3):241–246. doi: 10.1016/0165-1838(93)90330-w. [DOI] [PubMed] [Google Scholar]
  28. Hope B. T., Michael G. J., Knigge K. M., Vincent S. R. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2811–2814. doi: 10.1073/pnas.88.7.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hoyer D., Clarke D. E., Fozard J. R., Hartig P. R., Martin G. R., Mylecharane E. J., Saxena P. R., Humphrey P. P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev. 1994 Jun;46(2):157–203. [PubMed] [Google Scholar]
  30. Ito S., Kurokawa A., Ohga A., Ohta T., Sawabe K. Mechanical, electrical and cyclic nucleotide responses to peptide VIP and inhibitory nerve stimulation in rat stomach. J Physiol. 1990 Nov;430:337–353. doi: 10.1113/jphysiol.1990.sp018294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Jin J. G., Murthy K. S., Grider J. R., Makhlouf G. M. Activation of distinct cAMP- and cGMP-dependent pathways by relaxant agents in isolated gastric muscle cells. Am J Physiol. 1993 Mar;264(3 Pt 1):G470–G477. doi: 10.1152/ajpgi.1993.264.3.G470. [DOI] [PubMed] [Google Scholar]
  32. Kanada A., Hata F., Suthamnatpong N., Maehara T., Ishii T., Takeuchi T., Yagasaki O. Key roles of nitric oxide and cyclic GMP in nonadrenergic and noncholinergic inhibition in rat ileum. Eur J Pharmacol. 1992 Jun 5;216(2):287–292. doi: 10.1016/0014-2999(92)90372-b. [DOI] [PubMed] [Google Scholar]
  33. Kelm M., Schrader J. Control of coronary vascular tone by nitric oxide. Circ Res. 1990 Jun;66(6):1561–1575. doi: 10.1161/01.res.66.6.1561. [DOI] [PubMed] [Google Scholar]
  34. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  35. Lefebvre R. A., Baert E., Barbier A. J. Influence of NG-nitro-L-arginine on non-adrenergic non-cholinergic relaxation in the guinea-pig gastric fundus. Br J Pharmacol. 1992 May;106(1):173–179. doi: 10.1111/j.1476-5381.1992.tb14311.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lefebvre R. A. Non-adrenergic non-cholinergic neurotransmission in the proximal stomach. Gen Pharmacol. 1993 Mar;24(2):257–266. doi: 10.1016/0306-3623(93)90301-d. [DOI] [PubMed] [Google Scholar]
  37. Li C. G., Rand M. J. Nitric oxide and vasoactive intestinal polypeptide mediate non-adrenergic, non-cholinergic inhibitory transmission to smooth muscle of the rat gastric fundus. Eur J Pharmacol. 1990 Dec 4;191(3):303–309. doi: 10.1016/0014-2999(90)94162-q. [DOI] [PubMed] [Google Scholar]
  38. Lundberg J. M. Evidence for coexistence of vasoactive intestinal polypeptide (VIP) and acetylcholine in neurons of cat exocrine glands. Morphological, biochemical and functional studies. Acta Physiol Scand Suppl. 1981;496:1–57. [PubMed] [Google Scholar]
  39. Mandrek K., Milenov K. Responses of porcine gastric and duodenal smooth muscle to VIP. J Auton Pharmacol. 1991 Dec;11(6):353–364. doi: 10.1111/j.1474-8673.1991.tb00259.x. [DOI] [PubMed] [Google Scholar]
  40. Marczin N., Ryan U. S., Catravas J. D. Methylene blue inhibits nitrovasodilator- and endothelium-derived relaxing factor-induced cyclic GMP accumulation in cultured pulmonary arterial smooth muscle cells via generation of superoxide anion. J Pharmacol Exp Ther. 1992 Oct;263(1):170–179. [PubMed] [Google Scholar]
  41. Mayer B., Brunner F., Schmidt K. Inhibition of nitric oxide synthesis by methylene blue. Biochem Pharmacol. 1993 Jan 26;45(2):367–374. doi: 10.1016/0006-2952(93)90072-5. [DOI] [PubMed] [Google Scholar]
  42. Miller E. R., Ullrey D. E. The pig as a model for human nutrition. Annu Rev Nutr. 1987;7:361–382. doi: 10.1146/annurev.nu.07.070187.002045. [DOI] [PubMed] [Google Scholar]
  43. Miyazaki H., Koyama I., Nakamura H., Taneike T., Ohga A. Regional differences in cholinergic innervation and drug sensitivity in the smooth muscles of pig stomach. J Auton Pharmacol. 1991 Aug;11(4):255–265. doi: 10.1111/j.1474-8673.1991.tb00323.x. [DOI] [PubMed] [Google Scholar]
  44. Moummi C., Rattan S. Effect of methylene blue and N-ethylmaleimide on internal anal sphincter relaxation. Am J Physiol. 1988 Nov;255(5 Pt 1):G571–G578. doi: 10.1152/ajpgi.1988.255.5.G571. [DOI] [PubMed] [Google Scholar]
  45. Murray K. J. Cyclic AMP and mechanisms of vasodilation. Pharmacol Ther. 1990;47(3):329–345. doi: 10.1016/0163-7258(90)90060-f. [DOI] [PubMed] [Google Scholar]
  46. Murthy K. S., Jin J. G., Makhlouf G. M. Inhibition of nitric oxide synthase activity in dispersed gastric muscle cells by protein kinase C. Am J Physiol. 1994 Jan;266(1 Pt 1):G161–G165. doi: 10.1152/ajpgi.1994.266.1.G161. [DOI] [PubMed] [Google Scholar]
  47. Murthy K. S., Zhang K. M., Jin J. G., Grider J. R., Makhlouf G. M. VIP-mediated G protein-coupled Ca2+ influx activates a constitutive NOS in dispersed gastric muscle cells. Am J Physiol. 1993 Oct;265(4 Pt 1):G660–G671. doi: 10.1152/ajpgi.1993.265.4.G660. [DOI] [PubMed] [Google Scholar]
  48. Ohga A., Taneike T. Dissimilarity between the responses to adenosine triphosphate or its related compounds and non-adrenergic inhibitory nerve stimulation in the longitudinal smooth muscle of pig stomach. Br J Pharmacol. 1977 Jun;60(2):221–231. doi: 10.1111/j.1476-5381.1977.tb07744.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Rattan S., Moummi C. Influence of stimulators and inhibitors of cyclic nucleotides on lower esophageal sphincter. J Pharmacol Exp Ther. 1989 Feb;248(2):703–709. [PubMed] [Google Scholar]
  50. Saffrey M. J., Hassall C. J., Hoyle C. H., Belai A., Moss J., Schmidt H. H., Förstermann U., Murad F., Burnstock G. Colocalization of nitric oxide synthase and NADPH-diaphorase in cultured myenteric neurones. Neuroreport. 1992 Apr;3(4):333–336. doi: 10.1097/00001756-199204000-00011. [DOI] [PubMed] [Google Scholar]
  51. Scherer-Singler U., Vincent S. R., Kimura H., McGeer E. G. Demonstration of a unique population of neurons with NADPH-diaphorase histochemistry. J Neurosci Methods. 1983 Nov;9(3):229–234. doi: 10.1016/0165-0270(83)90085-7. [DOI] [PubMed] [Google Scholar]
  52. Seamon K. B., Daly J. W. Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J Cyclic Nucleotide Res. 1981;7(4):201–224. [PubMed] [Google Scholar]
  53. Smits G. J., Lefebvre R. A. Influence of age on the signal transduction pathway of non-adrenergic non-cholinergic neurotransmitters in the rat gastric fundus. Br J Pharmacol. 1995 Feb;114(3):640–647. doi: 10.1111/j.1476-5381.1995.tb17187.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Timmermans J. P., Barbiers M., Scheuermann D. W., Bogers J. J., Adriaensen D., Fekete E., Mayer B., Van Marck E. A., De Groodt-Lasseel M. H. Nitric oxide synthase immunoreactivity in the enteric nervous system of the developing human digestive tract. Cell Tissue Res. 1994 Feb;275(2):235–245. doi: 10.1007/BF00319421. [DOI] [PubMed] [Google Scholar]
  55. Timmermans J. P., Barbiers M., Scheuermann D. W., Stach W., Adriaensen D., Mayer B., De Groodt-Lasseel M. H. Distribution pattern, neurochemical features and projections of nitrergic neurons in the pig small intestine. Ann Anat. 1994 Dec;176(6):515–525. doi: 10.1016/s0940-9602(11)80387-0. [DOI] [PubMed] [Google Scholar]
  56. Vizzard M. A., Erdman S. L., Roppolo J. R., Förstermann U., de Groat W. C. Differential localization of neuronal nitric oxide synthase immunoreactivity and NADPH-diaphorase activity in the cat spinal cord. Cell Tissue Res. 1994 Nov;278(2):299–309. doi: 10.1007/BF00414174. [DOI] [PubMed] [Google Scholar]
  57. Ward S. M., Xue C., Shuttleworth C. W., Bredt D. S., Snyder S. H., Sanders K. M. NADPH diaphorase and nitric oxide synthase colocalization in enteric neurons of canine proximal colon. Am J Physiol. 1992 Aug;263(2 Pt 1):G277–G284. doi: 10.1152/ajpgi.1992.263.2.G277. [DOI] [PubMed] [Google Scholar]
  58. Young H. M., Furness J. B., Shuttleworth C. W., Bredt D. S., Snyder S. H. Co-localization of nitric oxide synthase immunoreactivity and NADPH diaphorase staining in neurons of the guinea-pig intestine. Histochemistry. 1992 May;97(4):375–378. doi: 10.1007/BF00270041. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES