Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Oct;116(4):2258–2266. doi: 10.1111/j.1476-5381.1995.tb15062.x

Pituitary adenylate cyclase-activating polypeptide, helospectin, and vasoactive intestinal polypeptide in human corpus cavernosum.

P Hedlund 1, P Alm 1, P Ekström 1, J Fahrenkrug 1, J Hannibal 1, H Hedlund 1, B Larsson 1, K E Andersson 1
PMCID: PMC1908961  PMID: 8564257

Abstract

1. The distribution and effects of pituitary adenylate cyclase-activating polypeptide (PACAP-27 and -38), helospectin (Hel-1 and Hel-2), and vasoactive intestinal polypeptide (VIP), were investigated in isolated preparations of human corpus cavernosum (CC). 2. Immunohistochemistry revealed coinciding profiles of nerve structures that showed immunoreactivities for VIP and PACAP, and VIP and Hel. Confocal microscopy showed the co-existence of VIP- and PACAP-immunoreactivities, and VIP- and Hel-immunoreactivities in most (90%) varicose nerve structures. 3. As determined by radioimmunoassay, the amounts of VIP, PACAP-27, and PACAP-38 in the preparations were 61.7 +/- 11.6, 0.1 +/- 0.05, and 3.7 +/- 0.5 pmol g-1 wet weight of tissue (pmol g-1 wet wt.), respectively. In tissue from patients with diabetes, the content of VIP was lower (13.7 +/- 0.5 pmol g-1 wet wt.), whereas that of PACAP (-27 and -38) was unchanged. 4. Cyclic nucleotide levels were determined in preparations exposed to PACAP-27, PACAP-38, Hel-1, Hel-2, and VIP. All the peptides, but Hel-2, significantly increased the concentrations of cyclic AMP, whereas the levels of cyclic GMP were unchanged. 5. The peptides concentration-dependently relaxed noradrenaline-contracted preparations. The order of potency was VIP > PACAP 27 > Hel-1 > Hel-2 > PACAP-38. 6. Hel-1, VIP and PACAP-27 effectively counteracted electrically induced contractions. At 10(-6) M, the highest peptide concentration used, the inhibitory effects obtained reached 96 +/- 3%, 87 +/- 6%, and 80 +/- 3%, respectively. 7. The results suggest that PACAP and Hel-1 are co-localized with VIP in nerve structures within the human cavernous tissue, and that the peptides are effective relaxants of CC preparations in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
2258

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Absood A., Chen D., Wang Z. Y., Håkanson R. Vascular effects of pituitary adenylate cyclase activating peptide: a comparison with vasoactive intestinal peptide. Regul Pept. 1992 Aug 13;40(3):323–329. doi: 10.1016/0167-0115(92)90519-z. [DOI] [PubMed] [Google Scholar]
  2. Absood A., Ekblad E., Ekelund M., Håkanson R., Sundler F. Helospectin-like peptides in the gastrointestinal tract: immunocytochemical localization and immunochemical characterization. Neuroscience. 1992;46(2):431–438. doi: 10.1016/0306-4522(92)90063-8. [DOI] [PubMed] [Google Scholar]
  3. Adaikan P. G., Kottegoda S. R., Ratnam S. S. Is vasoactive intestinal polypeptide the principal transmitter involved in human penile erection? J Urol. 1986 Mar;135(3):638–640. doi: 10.1016/s0022-5347(17)45767-3. [DOI] [PubMed] [Google Scholar]
  4. Alm P., Larsson B., Ekblad E., Sundler F., Andersson K. E. Immunohistochemical localization of peripheral nitric oxide synthase-containing nerves using antibodies raised against synthesized C- and N-terminal fragments of a cloned enzyme from rat brain. Acta Physiol Scand. 1993 Aug;148(4):421–429. doi: 10.1111/j.1748-1716.1993.tb09578.x. [DOI] [PubMed] [Google Scholar]
  5. Anderson K. E. Pharmacology of lower urinary tract smooth muscles and penile erectile tissues. Pharmacol Rev. 1993 Sep;45(3):253–308. [PubMed] [Google Scholar]
  6. Andersson K. E., Wagner G. Physiology of penile erection. Physiol Rev. 1995 Jan;75(1):191–236. doi: 10.1152/physrev.1995.75.1.191. [DOI] [PubMed] [Google Scholar]
  7. Bjartell A., Persson P., Absood A., Sundler F., Håkanson R. Helodermin-like peptides in noradrenaline cells of adrenal medulla. Regul Pept. 1989 Aug;26(1):27–34. doi: 10.1016/0167-0115(89)90101-8. [DOI] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  9. Burnett A. L., Lowenstein C. J., Bredt D. S., Chang T. S., Snyder S. H. Nitric oxide: a physiologic mediator of penile erection. Science. 1992 Jul 17;257(5068):401–403. doi: 10.1126/science.1378650. [DOI] [PubMed] [Google Scholar]
  10. Burnett A. L., Tillman S. L., Chang T. S., Epstein J. I., Lowenstein C. J., Bredt D. S., Snyder S. H., Walsh P. C. Immunohistochemical localization of nitric oxide synthase in the autonomic innervation of the human penis. J Urol. 1993 Jul;150(1):73–76. doi: 10.1016/s0022-5347(17)35401-0. [DOI] [PubMed] [Google Scholar]
  11. Christofi F. L., Wood J. D. Effects of PACAP on morphologically identified myenteric neurons in guinea pig small bowel. Am J Physiol. 1993 Mar;264(3 Pt 1):G414–G421. doi: 10.1152/ajpgi.1993.264.3.G414. [DOI] [PubMed] [Google Scholar]
  12. Christophe J. Type I receptors for PACAP (a neuropeptide even more important than VIP?). Biochim Biophys Acta. 1993 Oct 29;1154(2):183–199. doi: 10.1016/0304-4157(93)90011-c. [DOI] [PubMed] [Google Scholar]
  13. Desai H., Uddman R., Malina J., Sundler F. Helospectin-like immunoreactivity in the esophagus. Regul Pept. 1992 Aug 13;40(3):363–371. doi: 10.1016/0167-0115(92)90523-w. [DOI] [PubMed] [Google Scholar]
  14. Fahrenkrug J., Schaffalitzky de Muckadell O. B. Distribution of vasoactive intestinal polypeptide (VIP) in the porcine central nervous system. J Neurochem. 1978 Dec;31(6):1445–1451. doi: 10.1111/j.1471-4159.1978.tb06571.x. [DOI] [PubMed] [Google Scholar]
  15. Fahrenkrug J., Schaffalitzky de Muckadell O. V. Radioimmunoassay of vasoactive intestinal polypeptide (VIP) in plasma. J Lab Clin Med. 1977 Jun;89(6):1379–1388. [PubMed] [Google Scholar]
  16. Gottschall P. E., Tatsuno I., Arimura A. Hypothalamic binding sites for pituitary adenylate cyclase activating polypeptide: characterization and molecular identification. FASEB J. 1991 Feb;5(2):194–199. doi: 10.1096/fasebj.5.2.1848519. [DOI] [PubMed] [Google Scholar]
  17. Grundemar L., Högestätt E. D. Vascular effects of helodermin, helospectin I and helospectin II: a comparison with vasoactive intestinal peptide (VIP). Br J Pharmacol. 1990 Mar;99(3):526–528. doi: 10.1111/j.1476-5381.1990.tb12962.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gu J., Polak J. M., Probert L., Islam K. N., Marangos P. J., Mina S., Adrian T. E., McGregor G. P., O'Shaughnessy D. J., Bloom S. R. Peptidergic innervation of the human male genital tract. J Urol. 1983 Aug;130(2):386–391. doi: 10.1016/s0022-5347(17)51174-x. [DOI] [PubMed] [Google Scholar]
  19. Gulbenkian S., Wharton J., Polak J. M. The visualisation of cardiovascular innervation in the guinea pig using an antiserum to protein gene product 9.5 (PGP 9.5). J Auton Nerv Syst. 1987 Mar;18(3):235–247. doi: 10.1016/0165-1838(87)90122-6. [DOI] [PubMed] [Google Scholar]
  20. Hannibal J., Mikkelsen J. D., Clausen H., Holst J. J., Wulff B. S., Fahrenkrug J. Gene expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat hypothalamus. Regul Pept. 1995 Jan 26;55(2):133–148. doi: 10.1016/0167-0115(94)00099-j. [DOI] [PubMed] [Google Scholar]
  21. Hedlund H., Andersson K. E. Comparison of the responses to drugs acting on adrenoreceptors and muscarinic receptors in human isolated corpus cavernosum and cavernous artery. J Auton Pharmacol. 1985 Mar;5(1):81–88. doi: 10.1111/j.1474-8673.1985.tb00568.x. [DOI] [PubMed] [Google Scholar]
  22. Ishihara T., Shigemoto R., Mori K., Takahashi K., Nagata S. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron. 1992 Apr;8(4):811–819. doi: 10.1016/0896-6273(92)90101-i. [DOI] [PubMed] [Google Scholar]
  23. Jin J. G., Katsoulis S., Schmidt W. E., Grider J. R. Inhibitory transmission in tenia coli mediated by distinct vasoactive intestinal peptide and apamin-sensitive pituitary adenylate cyclase activating peptide receptors. J Pharmacol Exp Ther. 1994 Aug;270(2):433–439. [PubMed] [Google Scholar]
  24. Johnson G. D., Nogueira Araujo G. M. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
  25. Juenemann K. P., Lue T. F., Luo J. A., Jadallah S. A., Nunes L. L., Tanagho E. A. The role of vasoactive intestinal polypeptide as a neurotransmitter in canine penile erection: a combined in vivo and immunohistochemical study. J Urol. 1987 Oct;138(4):871–877. doi: 10.1016/s0022-5347(17)43406-9. [DOI] [PubMed] [Google Scholar]
  26. Kiely E. A., Bloom S. R., Williams G. Penile response to intracavernosal vasoactive intestinal polypeptide alone and in combination with other vasoactive agents. Br J Urol. 1989 Aug;64(2):191–194. doi: 10.1111/j.1464-410x.1989.tb05986.x. [DOI] [PubMed] [Google Scholar]
  27. Kimura C., Ohkubo S., Ogi K., Hosoya M., Itoh Y., Onda H., Miyata A., Jiang L., Dahl R. R., Stibbs H. H. A novel peptide which stimulates adenylate cyclase: molecular cloning and characterization of the ovine and human cDNAs. Biochem Biophys Res Commun. 1990 Jan 15;166(1):81–89. doi: 10.1016/0006-291x(90)91914-e. [DOI] [PubMed] [Google Scholar]
  28. Kivipelto L., Absood A., Håkanson R., Sundler F., Panula P. Helodermin- and helospectin-like immunoreactivities in the rat brain: an immunochemical and immunohistochemical study. Neuroscience. 1992;47(1):135–153. doi: 10.1016/0306-4522(92)90127-n. [DOI] [PubMed] [Google Scholar]
  29. Köves K., Arimura A., Somogyvári-Vigh A., Vigh S., Miller J. Immunohistochemical demonstration of a novel hypothalamic peptide, pituitary adenylate cyclase-activating polypeptide, in the ovine hypothalamus. Endocrinology. 1990 Jul;127(1):264–271. doi: 10.1210/endo-127-1-264. [DOI] [PubMed] [Google Scholar]
  30. Larsen J. J., Ottesen B., Fahrenkrug J., Fahrenkrug L. Vasoactive intestinal polypeptide (VIP) in the male genitourinary tract: concentration and motor effect. Invest Urol. 1981 Nov;19(3):211–213. [PubMed] [Google Scholar]
  31. Lincoln J., Crowe R., Blacklay P. F., Pryor J. P., Lumley J. S., Burnstock G. Changes in the VIPergic, cholinergic and adrenergic innervation of human penile tissue in diabetic and non-diabetic impotent males. J Urol. 1987 May;137(5):1053–1059. doi: 10.1016/s0022-5347(17)44358-8. [DOI] [PubMed] [Google Scholar]
  32. Lundberg L. M., Alm P., Wharton J., Polak J. M. Protein gene product 9.5 (PGP 9.5). A new neuronal marker visualizing the whole uterine innervation and pregnancy-induced and developmental changes in the guinea pig. Histochemistry. 1988;90(1):9–17. doi: 10.1007/BF00495700. [DOI] [PubMed] [Google Scholar]
  33. Luts A., Uddman R., Absood A., Håkanson R., Sundler F. Chemical coding of endocrine cells of the airways: presence of helodermin-like peptides. Cell Tissue Res. 1991 Sep;265(3):425–433. doi: 10.1007/BF00340865. [DOI] [PubMed] [Google Scholar]
  34. Miyata A., Arimura A., Dahl R. R., Minamino N., Uehara A., Jiang L., Culler M. D., Coy D. H. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989 Oct 16;164(1):567–574. doi: 10.1016/0006-291x(89)91757-9. [DOI] [PubMed] [Google Scholar]
  35. Miyata A., Jiang L., Dahl R. D., Kitada C., Kubo K., Fujino M., Minamino N., Arimura A. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun. 1990 Jul 31;170(2):643–648. doi: 10.1016/0006-291x(90)92140-u. [DOI] [PubMed] [Google Scholar]
  36. Moller K., Zhang Y. Z., Håkanson R., Luts A., Sjölund B., Uddman R., Sundler F. Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: immunocytochemical and immunochemical evidence. Neuroscience. 1993 Dec;57(3):725–732. doi: 10.1016/0306-4522(93)90018-b. [DOI] [PubMed] [Google Scholar]
  37. Morrow J. A., Lutz E. M., West K. M., Fink G., Harmar A. J. Molecular cloning and expression of a cDNA encoding a receptor for pituitary adenylate cyclase activating polypeptide (PACAP). FEBS Lett. 1993 Aug 23;329(1-2):99–105. doi: 10.1016/0014-5793(93)80202-6. [DOI] [PubMed] [Google Scholar]
  38. Naruse S., Suzuki T., Ozaki T., Nokihara K. Vasodilator effect of pituitary adenylate cyclase activating polypeptide (PACAP) on femoral blood flow in dogs. Peptides. 1993 May-Jun;14(3):505–510. doi: 10.1016/0196-9781(93)90139-8. [DOI] [PubMed] [Google Scholar]
  39. Ny L., Alm P., Ekström P., Hannibal J., Larsson B., Andersson K. E. Nitric oxide synthase-containing, peptide-containing, and acetylcholinesterase-positive nerves in the cat lower oesophagus. Histochem J. 1994 Sep;26(9):721–733. doi: 10.1007/BF00158204. [DOI] [PubMed] [Google Scholar]
  40. Ny L., Alm P., Larsson B., Ekström P., Andersson K. E. Nitric oxide pathway in cat esophagus: localization of nitric oxide synthase and functional effects. Am J Physiol. 1995 Jan;268(1 Pt 1):G59–G70. doi: 10.1152/ajpgi.1995.268.1.G59. [DOI] [PubMed] [Google Scholar]
  41. Parker D. S., Raufman J. P., O'Donohue T. L., Bledsoe M., Yoshida H., Pisano J. J. Amino acid sequences of helospectins, new members of the glucagon superfamily, found in Gila monster venom. J Biol Chem. 1984 Oct 10;259(19):11751–11755. [PubMed] [Google Scholar]
  42. Polak J. M., Gu J., Mina S., Bloom S. R. Vipergic nerves in the penis. Lancet. 1981 Aug 1;2(8240):217–219. doi: 10.1016/s0140-6736(81)90471-2. [DOI] [PubMed] [Google Scholar]
  43. Robberecht P., De Graef J., Woussen M. C., Vandermeers-Piret M. C., Vandermeers A., De Neef P., Cauvin A., Yanaihara C., Yanaihara N., Christophe J. Immunoreactive helodermin-like peptides in rat: a new class of mammalian neuropeptides related to secretin and VIP. Biochem Biophys Res Commun. 1985 Jul 16;130(1):333–342. doi: 10.1016/0006-291x(85)90422-x. [DOI] [PubMed] [Google Scholar]
  44. Salomon R., Couvineau A., Rouyer-Fessard C., Voisin T., Lavallée D., Blais A., Darmoul D., Laburthe M. Characterization of a common VIP-PACAP receptor in human small intestinal epithelium. Am J Physiol. 1993 Feb;264(2 Pt 1):E294–E300. doi: 10.1152/ajpendo.1993.264.2.E294. [DOI] [PubMed] [Google Scholar]
  45. Shirai M., Maki A., Takanami M., Ando K., Nakamura K., Yanaihara N., Yanaihara C., Iguchi K., Fujita T., Iwanaga T. Content and distribution of vasoactive intestinal polypeptide (VIP) in cavernous tissue of human penis. Urology. 1990 Apr;35(4):360–363. doi: 10.1016/0090-4295(90)80166-k. [DOI] [PubMed] [Google Scholar]
  46. Shivers B. D., Görcs T. J., Gottschall P. E., Arimura A. Two high affinity binding sites for pituitary adenylate cyclase-activating polypeptide have different tissue distributions. Endocrinology. 1991 Jun;128(6):3055–3065. doi: 10.1210/endo-128-6-3055. [DOI] [PubMed] [Google Scholar]
  47. Sundler F., Ekblad E., Absood A., Håkanson R., Köves K., Arimura A. Pituitary adenylate cyclase activating peptide: a novel vasoactive intestinal peptide-like neuropeptide in the gut. Neuroscience. 1992;46(2):439–454. doi: 10.1016/0306-4522(92)90064-9. [DOI] [PubMed] [Google Scholar]
  48. Takahashi Y., Aboseif S. R., Benard F., Stief C. G., Lue T. F., Tanagho E. A. Effect of intracavernous simultaneous injection of acetylcholine and vasoactive intestinal polypeptide on canine penile erection. J Urol. 1992 Aug;148(2 Pt 1):446–448. doi: 10.1016/s0022-5347(17)36625-9. [DOI] [PubMed] [Google Scholar]
  49. Vigh S., Arimura A., Köves K., Somogyvári-Vigh A., Sitton J., Fermin C. D. Immunohistochemical localization of the neuropeptide, pituitary adenylate cyclase activating polypeptide (PACAP), in human and primate hypothalamus. Peptides. 1991 Mar-Apr;12(2):313–318. doi: 10.1016/0196-9781(91)90018-k. [DOI] [PubMed] [Google Scholar]
  50. Wessendorf M. W., Elde R. P. Characterization of an immunofluorescence technique for the demonstration of coexisting neurotransmitters within nerve fibers and terminals. J Histochem Cytochem. 1985 Oct;33(10):984–994. doi: 10.1177/33.10.2413102. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES