Abstract
1. The interaction of ramipril, an inhibitor of angiotensin I converting enzyme, with renal lithium handling was analysed in conscious normotensive Wistar rats and compared with the known increase in renal tubular lithium reabsorption induced by the non-steroidal anti-inflammatory drug, indomethacin. 2. The rats were treated for five days with ramipril (1 mg kg-1 day-1 orally), indomethacin (2.5 mg kg-1 day-1 intramuscularly) or their solvents. Lithium chloride (16.7 mg kg-1 intraperitonealy) was given as a single dose on the fifth day and renal functions were measured. 3. Ramipril induced a decrease in renal lithium clearance which was correlated with the decrease in the quantity of filtered lithium and the increase in the tubular fractional reabsorption of the metal. Ramipril also reduced the systolic blood pressure of the rats by about 15 mmHg. 4. In the absence of any effect on creatinine clearance or systolic blood pressure, indomethacin increased renal fractional lithium reabsorption and led to an increase in plasma lithium levels, as previously reported by our group. 5. In conclusions, our results indicate that ramipril decreases renal lithium excretion in Wistar rats, when given orally at a dose of 1 mg kg-1 day-1 over five days.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atherton J. C., Green R., Higgins A., Large A., McNicholas C., Parker D., Pempkowiak L., Rajani K., Smith J. Lithium clearance in healthy humans: effects of sodium intake and diuretics. Kidney Int Suppl. 1990 Mar;28:S36–S38. [PubMed] [Google Scholar]
- Baldwin C. M., Safferman A. Z. A case of lisinopril-induced lithium toxicity. DICP. 1990 Oct;24(10):946–947. doi: 10.1177/106002809002401007. [DOI] [PubMed] [Google Scholar]
- Bao G., Gohlke P., Qadri F., Unger T. Chronic kinin receptor blockade attenuates the antihypertensive effect of ramipril. Hypertension. 1992 Jul;20(1):74–79. doi: 10.1161/01.hyp.20.1.74. [DOI] [PubMed] [Google Scholar]
- Brunner H. R., Waeber B., Nussberger J. Renal effects of converting enzyme inhibition. J Cardiovasc Pharmacol. 1987;9 (Suppl 3):S6–14. doi: 10.1097/00005344-198700003-00003. [DOI] [PubMed] [Google Scholar]
- Campbell D. J., Kladis A., Duncan A. M. Effects of converting enzyme inhibitors on angiotensin and bradykinin peptides. Hypertension. 1994 Apr;23(4):439–449. doi: 10.1161/01.hyp.23.4.439. [DOI] [PubMed] [Google Scholar]
- Cogan M. G., Liu F. Y., Wong P. C., Timmermans P. B. Comparison of inhibitory potency by nonpeptide angiotensin II receptor antagonists PD123177 and DuP 753 on proximal nephron and renal transport. J Pharmacol Exp Ther. 1991 Nov;259(2):687–691. [PubMed] [Google Scholar]
- Correa F. J., Eiser A. R. Angiotensin-converting enzyme inhibitors and lithium toxicity. Am J Med. 1992 Jul;93(1):108–109. doi: 10.1016/0002-9343(92)90693-6. [DOI] [PubMed] [Google Scholar]
- Douste-Blazy P., Rostin M., Livarek B., Tordjman E., Montastruc J. L., Galinier F. Angiotensin converting enzyme inhibitors and lithium treatment. Lancet. 1986 Jun 21;1(8495):1448–1448. doi: 10.1016/s0140-6736(86)91598-9. [DOI] [PubMed] [Google Scholar]
- Drouet A., Bouvet O. Lithium et inhibiteurs de l'enzyme de conversion. Encephale. 1990 Jan-Feb;16(1):51–52. [PubMed] [Google Scholar]
- Fyhrquist F., Forslund T., Tikkanen I., Grönhagen-Riska C. Induction of angiotensin I-converting enzyme rat lung with Captopril (SQ 14225). Eur J Pharmacol. 1980 Oct 31;67(4):473–475. doi: 10.1016/0014-2999(80)90189-2. [DOI] [PubMed] [Google Scholar]
- Greger R. Possible sites of lithium transport in the nephron. Kidney Int Suppl. 1990 Mar;28:S26–S30. [PubMed] [Google Scholar]
- Griffin J. H., Hahn S. M. Lisinopril-induced lithium toxicity. DICP. 1991 Jan;25(1):101–101. doi: 10.1177/106002809102500123. [DOI] [PubMed] [Google Scholar]
- Hall J. E., Guyton A. C., Jackson T. E., Coleman T. G., Lohmeier T. E., Trippodo N. C. Control of glomerular filtration rate by renin-angiotensin system. Am J Physiol. 1977 Nov;233(5):F366–F372. doi: 10.1152/ajprenal.1977.233.5.F366. [DOI] [PubMed] [Google Scholar]
- Imbs J. L., Singer L., Danion J. M., Schmidt M., Zawilslak R. Effects of indomethacin and methylprednisolone on renal elimination of lithium in the rat. Int Pharmacopsychiatry. 1980;15(3):143–149. doi: 10.1159/000468430. [DOI] [PubMed] [Google Scholar]
- Knox F. G., Schneider E. G., Willis L. R., Strandhoy J. W., Ott C. E. Editorial: Site and control of phosphate reabsorption by the kidney. Kidney Int. 1973 Jun;3(6):347–353. doi: 10.1038/ki.1973.56. [DOI] [PubMed] [Google Scholar]
- Koomans H. A., Dorhout Mees E. J. Lithium in renal physiology: post-conference discussion and consensus. Kidney Int Suppl. 1990 Mar;28:S78–S79. [PubMed] [Google Scholar]
- Leyssac P. P. Validity of the lithium clearance concept assessed with micropuncture studies. Kidney Int Suppl. 1990 Mar;28:S17–S21. [PubMed] [Google Scholar]
- Mahieu M., Houvenagel E., Leduc J. J., Choteau P. Lithium-inhibiteurs de l'enzyme de conversion: une association à éviter? Presse Med. 1988 Feb 20;17(6):281–281. [PubMed] [Google Scholar]
- Michel B., Stephan D., Grima M., Barthelmebs M., Imbs J. L. Effects of one-hour and one-week treatment with ramipril on plasma and renal brush border angiotensin converting enzyme in the rat. Eur J Pharmacol. 1993 Oct 5;242(3):237–243. doi: 10.1016/0014-2999(93)90247-f. [DOI] [PubMed] [Google Scholar]
- Sakamoto T., Chen C., Lokhandwala M. F. Contribution by bradykinin to the natriuretic response to the angiotensin converting enzyme inhibitor ramiprilat in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol. 1994 Jul;350(1):84–89. doi: 10.1007/BF00180015. [DOI] [PubMed] [Google Scholar]
- Simon G., Morioka S., Snyder D. K., Cohn J. N. Increased renal plasma flow in long-term enalapril treatment of hypertension. Clin Pharmacol Ther. 1983 Oct;34(4):459–465. doi: 10.1038/clpt.1983.198. [DOI] [PubMed] [Google Scholar]
- Sánchez R. A., Marcó E., Gilbert H. B., Raffaele P., Brito M., Giménez M., Moledo L. I. Natriuretic effect and changes in renal haemodynamics induced by enalapril in essential hypertension. Drugs. 1985;30 (Suppl 1):49–58. doi: 10.2165/00003495-198500301-00008. [DOI] [PubMed] [Google Scholar]
- Unger T., Schüll B., Rascher W., Lang R. E., Ganten D. Selective activation of the converting enzyme inhibitor MK 421 and comparison of its active diacid form with captopril in different tissues of the rat. Biochem Pharmacol. 1982 Oct 1;31(19):3063–3070. doi: 10.1016/0006-2952(82)90081-8. [DOI] [PubMed] [Google Scholar]
- Welsch C., Grima M., Giesen E. M., Helwig J. J., Barthelmebs M., Coquard C., Imbs J. L. Assay of tissue angiotensin converting enzyme. J Cardiovasc Pharmacol. 1989;14 (Suppl 4):S26–S31. [PubMed] [Google Scholar]
- Wong P. C., Price W. A., Chiu A. T., Duncia J. V., Carini D. J., Wexler R. R., Johnson A. L., Timmermans P. B. Nonpeptide angiotensin II receptor antagonists. VIII. Characterization of functional antagonism displayed by DuP 753, an orally active antihypertensive agent. J Pharmacol Exp Ther. 1990 Feb;252(2):719–725. [PubMed] [Google Scholar]
