Abstract
1. SMS 201-995, a somatostatin analogue which interacts with highest affinities at somatostatin receptor subtypes 5 > 2 > or = 3, was microinjected into selective brain sites and its influence on pentagastrin (10 micrograms kg-1 h-1, i.v.)-stimulated gastric acid secretion was investigated in rats anaesthetized with urethane. Gastric acid secretion was measured by flushing the stomach with saline through a gastric cannula every 10 min. 2. SMS 201-995 microinjected into the dorsal vagal complex (DVC, 7, 15, 30 and 60 ng) dose-dependently increased pentagastrin-stimulated gastric acid secretion. The peak acid response was reached within 20 min and returned to basal level 50 min post-injection. SMA 201-995 (30 ng) microinjected into the surrounding area or the central amygdala did not modify pentagastrin-stimulated acid secretion. 3. SMS 201-995 injected into the lateral ventricle (i.c.v., 100, 200, or 300 ng), paraventricular nucleus (PVN) or lateral hypothalamus (LH) (7.5, 15, or 30 ng) dose-dependently inhibited pentagastrin-stimulated gastric acid secretion. SMS 201-995 (30 ng) microinjected into the area surrounding the PVN or LH did not modify the acid secretion response to pentagastrin. 4. Vagotomy prevented the effects of SMS 201-995 (30 ng) microinjected into the DVC and LH. 5. Spinal cord transection abolished the inhibitory action of SMS 201-995 (30 ng) microinjected into the PVN but not the LH. 6. These results demonstrate that SMS 201-995 acts in the DVC to enhance and in the LH and PVN to inhibit pentagastrin-stimulated gastric acid secretion.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berthoud H. R., Jedrzejewska A., Powley T. L. Simultaneous labeling of vagal innervation of the gut and afferent projections from the visceral forebrain with dil injected into the dorsal vagal complex in the rat. J Comp Neurol. 1990 Nov 1;301(1):65–79. doi: 10.1002/cne.903010107. [DOI] [PubMed] [Google Scholar]
- Breder C. D., Yamada Y., Yasuda K., Seino S., Saper C. B., Bell G. I. Differential expression of somatostatin receptor subtypes in brain. J Neurosci. 1992 Oct;12(10):3920–3934. doi: 10.1523/JNEUROSCI.12-10-03920.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruno J. F., Xu Y., Song J., Berelowitz M. Molecular cloning and functional expression of a brain-specific somatostatin receptor. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11151–11155. doi: 10.1073/pnas.89.23.11151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruno J. F., Xu Y., Song J., Berelowitz M. Tissue distribution of somatostatin receptor subtype messenger ribonucleic acid in the rat. Endocrinology. 1993 Dec;133(6):2561–2567. doi: 10.1210/endo.133.6.8243278. [DOI] [PubMed] [Google Scholar]
- Finley J. C., Maderdrut J. L., Roger L. J., Petrusz P. The immunocytochemical localization of somatostatin-containing neurons in the rat central nervous system. Neuroscience. 1981;6(11):2173–2192. doi: 10.1016/0306-4522(81)90006-3. [DOI] [PubMed] [Google Scholar]
- Fisher D. A., Brown M. R. Somatostatin analog: plasma catecholamine suppression mediated by the central nervous system. Endocrinology. 1980 Sep;107(3):714–718. doi: 10.1210/endo-107-3-714. [DOI] [PubMed] [Google Scholar]
- Hisano S., Daikoku S. Existence of mutual synaptic relations between corticotropin-releasing factor-containing and somatostatin-containing neurons in the rat hypothalamus. Brain Res. 1991 Apr 5;545(1-2):265–275. doi: 10.1016/0006-8993(91)91295-c. [DOI] [PubMed] [Google Scholar]
- Kong H., DePaoli A. M., Breder C. D., Yasuda K., Bell G. I., Reisine T. Differential expression of messenger RNAs for somatostatin receptor subtypes SSTR1, SSTR2 and SSTR3 in adult rat brain: analysis by RNA blotting and in situ hybridization histochemistry. Neuroscience. 1994 Mar;59(1):175–184. doi: 10.1016/0306-4522(94)90108-2. [DOI] [PubMed] [Google Scholar]
- Krantic S., Martel J. C., Weissmann D., Quirion R. Radioautographic analysis of somatostatin receptor sub-type in rat hypothalamus. Brain Res. 1989 Oct 2;498(2):267–278. doi: 10.1016/0006-8993(89)91105-0. [DOI] [PubMed] [Google Scholar]
- Lenz H. J., Forquignon I., Drüge G., Greten H. Effects of neuropeptides on gastric acid and duodenal bicarbonate secretions in freely moving rats. Regul Pept. 1989 Mar;24(3):293–300. doi: 10.1016/0167-0115(89)90225-5. [DOI] [PubMed] [Google Scholar]
- Luiten P. G., ter Horst G. J., Karst H., Steffens A. B. The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res. 1985 Mar 11;329(1-2):374–378. doi: 10.1016/0006-8993(85)90554-2. [DOI] [PubMed] [Google Scholar]
- Martínez V., Coy D. H., Taché Y. Influence of intracisternal injection of somatostatin analog receptor subtypes 2, 3 and 5 on gastric acid secretion in conscious rats. Neurosci Lett. 1995 Feb 17;186(2-3):79–82. doi: 10.1016/0304-3940(95)11286-6. [DOI] [PubMed] [Google Scholar]
- Millhorn D. E., Seroogy K., Hökfelt T., Schmued L. C., Terenius L., Buchan A., Brown J. C. Neurons of the ventral medulla oblongata that contain both somatostatin and enkephalin immunoreactivities project to nucleus tractus solitarii and spinal cord. Brain Res. 1987 Oct 20;424(1):99–108. doi: 10.1016/0006-8993(87)91197-8. [DOI] [PubMed] [Google Scholar]
- Moreau J. P., DeFeudis F. V. Pharmacological studies of somatostatin and somatostatin-analogues: therapeutic advances and perspectives. Life Sci. 1987 Feb 2;40(5):419–437. doi: 10.1016/0024-3205(87)90107-x. [DOI] [PubMed] [Google Scholar]
- O'Carroll A. M., Lolait S. J., König M., Mahan L. C. Molecular cloning and expression of a pituitary somatostatin receptor with preferential affinity for somatostatin-28. Mol Pharmacol. 1992 Dec;42(6):939–946. [PubMed] [Google Scholar]
- Okuma Y., Osumi Y. Dual effects on gastric acid secretion of electrical stimulation of anterior parts of the rat hypothalamus. Jpn J Pharmacol. 1989 Jan;49(1):37–42. doi: 10.1254/jjp.49.37. [DOI] [PubMed] [Google Scholar]
- Pérez J., Rigo M., Kaupmann K., Bruns C., Yasuda K., Bell G. I., Lübbert H., Hoyer D. Localization of somatostatin (SRIF) SSTR-1, SSTR-2 and SSTR-3 receptor mRNA in rat brain by in situ hybridization. Naunyn Schmiedebergs Arch Pharmacol. 1994 Feb;349(2):145–160. doi: 10.1007/BF00169831. [DOI] [PubMed] [Google Scholar]
- Raynor K., Murphy W. A., Coy D. H., Taylor J. E., Moreau J. P., Yasuda K., Bell G. I., Reisine T. Cloned somatostatin receptors: identification of subtype-selective peptides and demonstration of high affinity binding of linear peptides. Mol Pharmacol. 1993 Jun;43(6):838–844. [PubMed] [Google Scholar]
- Raynor K., O'Carroll A. M., Kong H., Yasuda K., Mahan L. C., Bell G. I., Reisine T. Characterization of cloned somatostatin receptors SSTR4 and SSTR5. Mol Pharmacol. 1993 Aug;44(2):385–392. [PubMed] [Google Scholar]
- Reisine T., Bell G. I. Molecular properties of somatostatin receptors. Neuroscience. 1995 Aug;67(4):777–790. doi: 10.1016/0306-4522(95)00072-q. [DOI] [PubMed] [Google Scholar]
- Reubi J. C., Maurer R. Autoradiographic mapping of somatostatin receptors in the rat central nervous system and pituitary. Neuroscience. 1985 Aug;15(4):1183–1193. doi: 10.1016/0306-4522(85)90261-1. [DOI] [PubMed] [Google Scholar]
- Rossowski W. J., Coy D. H. Potent inhibitory effects of a type four receptor-selective somatostatin analog on rat insulin release. Biochem Biophys Res Commun. 1993 Dec 15;197(2):366–371. doi: 10.1006/bbrc.1993.2488. [DOI] [PubMed] [Google Scholar]
- Saperas E., Yang H., Taché Y. Interleukin-1 beta acts at hypothalamic sites to inhibit gastric acid secretion in rats. Am J Physiol. 1992 Sep;263(3 Pt 1):G414–G418. doi: 10.1152/ajpgi.1992.263.3.G414. [DOI] [PubMed] [Google Scholar]
- Sawchenko P. E., Swanson L. W. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol. 1982 Mar 1;205(3):260–272. doi: 10.1002/cne.902050306. [DOI] [PubMed] [Google Scholar]
- Shapiro R. E., Miselis R. R. The central organization of the vagus nerve innervating the stomach of the rat. J Comp Neurol. 1985 Aug 22;238(4):473–488. doi: 10.1002/cne.902380411. [DOI] [PubMed] [Google Scholar]
- Shiraishi S., Kuriyama K., Saika T., Yoshida S., Lin L. P., Kitajiri M., Yamashita T., Kumazawa T., Shiosáka S. Autoradiographic localization of somatostatin mRNA in the adult rat lower brainstem: observation by the double illumination technique. Neuropeptides. 1993 Feb;24(2):71–79. doi: 10.1016/0143-4179(93)90024-5. [DOI] [PubMed] [Google Scholar]
- Shiraishi T. Effects of lateral hypothalamic stimulation on medulla oblongata and gastric vagal neural responses. Brain Res Bull. 1980 May-Jun;5(3):245–250. doi: 10.1016/0361-9230(80)90165-3. [DOI] [PubMed] [Google Scholar]
- Somiya H., Tonoue T. Neuropeptides as central integrators of autonomic nerve activity: effects of TRH, SRIF, VIP and bombesin on gastric and adrenal nerves. Regul Pept. 1984 Sep;9(1-2):47–52. doi: 10.1016/0167-0115(84)90006-5. [DOI] [PubMed] [Google Scholar]
- Stephens R. L., Jr Disparate effects of intracisternal RX 77368 and ODT8-SS on gastric acid and serotonin release: role of adrenal catecholamines. Regul Pept. 1991 Oct 1;36(1):21–28. doi: 10.1016/0167-0115(91)90192-j. [DOI] [PubMed] [Google Scholar]
- Swanson L. W., Kuypers H. G. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol. 1980 Dec 1;194(3):555–570. doi: 10.1002/cne.901940306. [DOI] [PubMed] [Google Scholar]
- Tache Y., Lesiege D., Goto Y. Neural pathways involved in intracisternal bombesin-induced inhibition of gastric secretion in rats. Dig Dis Sci. 1986 Apr;31(4):412–417. doi: 10.1007/BF01311678. [DOI] [PubMed] [Google Scholar]
- Taché Y., Lesiege D., Vale W., Collu R. Gastric hypersecretion by intracisternal TRH: dissociation from hypophysiotropic activity and role of central catecholamine. Eur J Pharmacol. 1985 Jan 2;107(2):149–155. doi: 10.1016/0014-2999(85)90053-6. [DOI] [PubMed] [Google Scholar]
- Taché Y., Rivier J., Vale W., Brown M. Is somatostatin or a somatostatin-like peptide involved in central nervous system control of gastric secretion? Regul Pept. 1981 Feb;1(5):307–315. doi: 10.1016/0167-0115(81)90054-9. [DOI] [PubMed] [Google Scholar]
- Taché Y., Yang H. Brain regulation of gastric acid secretion by peptides. Sites and mechanisms of action. Ann N Y Acad Sci. 1990;597:128–145. doi: 10.1111/j.1749-6632.1990.tb16163.x. [DOI] [PubMed] [Google Scholar]
- Yamada Y., Kagimoto S., Kubota A., Yasuda K., Masuda K., Someya Y., Ihara Y., Li Q., Imura H., Seino S. Cloning, functional expression and pharmacological characterization of a fourth (hSSTR4) and a fifth (hSSTR5) human somatostatin receptor subtype. Biochem Biophys Res Commun. 1993 Sep 15;195(2):844–852. doi: 10.1006/bbrc.1993.2122. [DOI] [PubMed] [Google Scholar]
- Yanagisawa K., Yang H., Walsh J. H., Taché Y. Role of acetylcholine, histamine and gastrin in the acid response to intracisternal injection of TRH analog, RX 77368, in the rat. Regul Pept. 1990 Feb 4;27(2):161–170. doi: 10.1016/0167-0115(90)90036-v. [DOI] [PubMed] [Google Scholar]
- Yoneda M., Raybould H., Taché Y. Central action of somatostatin analog, SMS 201-995, to stimulate gastric acid secretion in rats. Peptides. 1991 May-Jun;12(3):401–406. doi: 10.1016/0196-9781(91)90076-2. [DOI] [PubMed] [Google Scholar]
