Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Jul;115(6):1103–1109. doi: 10.1111/j.1476-5381.1995.tb15924.x

[3H]-lifarizine, a high affinity probe for inactivated sodium channels.

A C MacKinnon 1, K M Wyatt 1, J G McGivern 1, R D Sheridan 1, C M Brown 1
PMCID: PMC1908993  PMID: 7582509

Abstract

1. [3H]-lifarizine bound saturably and reversibly to an apparently homogeneous class of high affinity sites in rat cerebrocortical membranes (Kd = 10.7 +/- 2.9 nM; Bmax = 5.10 +/- 1.43 pmol mg-1 protein). 2. The binding of [3H]-lifarizine was unaffected by sodium channel toxins binding to site 1 (tetrodotoxin), site 3 (alpha-scorpion venom) or site 5 (brevetoxin), Furthermore, lifarizine at concentrations up to 10 microM had no effect on [3H]-saxitoxin (STX) binding to toxin site 1. Lifarizine displaced [3H]-batrachotoxinin-A 20-alpha-benzoate (BTX) binding with moderate affinity (pIC50 7.31 +/- 0.24) indicating an interaction with toxin site 2. However, lifarizine accelerated the dissociation of [3H]-BTX and decreased both the affinity and density of sites labelled by [3H]-BTX, suggesting an allosteric interaction with toxin site 2. 3. The binding of [3H]-lifarizine was voltage-sensitive, binding to membranes with higher affinity than to synaptosomes (pIC50 for cold lifarizine = 7.99 +/- 0.09 in membranes and 6.68 +/- 0.14 in synaptosomes). Depolarization of synaptosomes with 130 mM KCl increased the affinity of lifarizine almost 10 fold (pIC50 = 7.86 +/- 0.25). This suggests that lifarizine binds selectively to inactivated sodium channels which predominate both in the membrane preparation and in the depolarized synaptosomal preparation. 4. There was negligible [3H]-lifarizine and [3H]-BTX binding to solubilized sodium channels, although [3H]-STX binding was retained under these conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1103

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agnew W. S., Raftery M. A. Solubilized tetrodotoxin binding component from the electroplax of Electrophorus electricus. Stability as a function of mixed lipid-detergent micelle composition. Biochemistry. 1979 May 15;18(10):1912–1919. doi: 10.1021/bi00577a010. [DOI] [PubMed] [Google Scholar]
  2. Brown C. M., Calder C., Alps B. J., Spedding M. The effect of lifarizine (RS-87476), a novel sodium and calcium channel modulator, on ischaemic dopamine depletion in the corpus striatum of the gerbil. Br J Pharmacol. 1993 May;109(1):175–177. doi: 10.1111/j.1476-5381.1993.tb13549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Catterall W. A. Localization of sodium channels in cultured neural cells. J Neurosci. 1981 Jul;1(7):777–783. doi: 10.1523/JNEUROSCI.01-07-00777.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Catterall W. A., Morrow C. S., Daly J. W., Brown G. B. Binding of batrachotoxinin A 20-alpha-benzoate to a receptor site associated with sodium channels in synaptic nerve ending particles. J Biol Chem. 1981 Sep 10;256(17):8922–8927. [PubMed] [Google Scholar]
  5. Catterall W. A., Morrow C. S., Hartshorne R. P. Neurotoxin binding to receptor sites associated with voltage-sensitive sodium channels in intact, lysed, and detergent-solubilized brain membranes. J Biol Chem. 1979 Nov 25;254(22):11379–11387. [PubMed] [Google Scholar]
  6. Catterall W. A. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol. 1980;20:15–43. doi: 10.1146/annurev.pa.20.040180.000311. [DOI] [PubMed] [Google Scholar]
  7. Catterall W. A., Risk M. Toxin T4(6) from Ptychodiscus brevis (formerly Gymnodinium breve) enhances activation of voltage-sensitive sodium channels by veratridine. Mol Pharmacol. 1981 Mar;19(2):345–348. [PubMed] [Google Scholar]
  8. Couraud F., Jover E., Dubois J. M., Rochat H. Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon. 1982;20(1):9–16. doi: 10.1016/0041-0101(82)90138-6. [DOI] [PubMed] [Google Scholar]
  9. DeBlasi A., O'Reilly K., Motulsky H. J. Calculating receptor number from binding experiments using same compound as radioligand and competitor. Trends Pharmacol Sci. 1989 Jun;10(6):227–229. doi: 10.1016/0165-6147(89)90266-6. [DOI] [PubMed] [Google Scholar]
  10. Feller D. J., Talvenheimo J. A., Catterall W. A. The sodium channel from rat brain. Reconstitution of voltage-dependent scorpion toxin binding in vesicles of defined lipid composition. J Biol Chem. 1985 Sep 25;260(21):11542–11547. [PubMed] [Google Scholar]
  11. Francis J., Burnham W. M. [3H]Phenytoin identifies a novel anticonvulsant-binding domain on voltage-dependent sodium channels. Mol Pharmacol. 1992 Dec;42(6):1097–1103. [PubMed] [Google Scholar]
  12. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  13. Hartshorne R. P., Catterall W. A. Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4620–4624. doi: 10.1073/pnas.78.7.4620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hartshorne R. P., Catterall W. A. The sodium channel from rat brain. Purification and subunit composition. J Biol Chem. 1984 Feb 10;259(3):1667–1675. [PubMed] [Google Scholar]
  15. Hille B., Leibowitz M. D., Sutro J. B., Schwarz J. R., Holan G. State-dependent modification of sodium channels by lipid-soluble agonists. Soc Gen Physiol Ser. 1987;41:109–124. [PubMed] [Google Scholar]
  16. Isom L. L., De Jongh K. S., Catterall W. A. Auxiliary subunits of voltage-gated ion channels. Neuron. 1994 Jun;12(6):1183–1194. doi: 10.1016/0896-6273(94)90436-7. [DOI] [PubMed] [Google Scholar]
  17. Knight I. The development and applications of sucralose, a new high-intensity sweetener. Can J Physiol Pharmacol. 1994 Apr;72(4):435–439. doi: 10.1139/y94-063. [DOI] [PubMed] [Google Scholar]
  18. Kucharczyk J., Mintorovitch J., Moseley M. E., Asgari H. S., Sevick R. J., Derugin N., Norman D. Ischemic brain damage: reduction by sodium-calcium ion channel modulator RS-87476. Radiology. 1991 Apr;179(1):221–227. doi: 10.1148/radiology.179.1.2006281. [DOI] [PubMed] [Google Scholar]
  19. Lazdunski M., Frelin C., Barhanin J., Lombet A., Meiri H., Pauron D., Romey G., Schmid A., Schweitz H., Vigne P. Polypeptide toxins as tools to study voltage-sensitive Na+ channels. Ann N Y Acad Sci. 1986;479:204–220. doi: 10.1111/j.1749-6632.1986.tb15571.x. [DOI] [PubMed] [Google Scholar]
  20. Lombet A., Mourre C., Lazdunski M. Interaction of insecticides of the pyrethroid family with specific binding sites on the voltage-dependent sodium channel from mammalian brain. Brain Res. 1988 Aug 30;459(1):44–53. doi: 10.1016/0006-8993(88)90284-3. [DOI] [PubMed] [Google Scholar]
  21. May G. R., Rowand W. S., McCormack J. G., Sheridan R. D. Neuroprotective profile of lifarizine (RS-87476) in rat cerebrocortical neurones in culture. Br J Pharmacol. 1995 Apr;114(7):1365–1370. doi: 10.1111/j.1476-5381.1995.tb13357.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McGivern J. G., Patmore L., Sheridan R. D. Actions of the novel neuroprotective agent, lifarizine (RS-87476), on voltage-dependent sodium currents in the neuroblastoma cell line, N1E-115. Br J Pharmacol. 1995 Apr;114(8):1738–1744. doi: 10.1111/j.1476-5381.1995.tb14965.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Poli M. A., Mende T. J., Baden D. G. Brevetoxins, unique activators of voltage-sensitive sodium channels, bind to specific sites in rat brain synaptosomes. Mol Pharmacol. 1986 Aug;30(2):129–135. [PubMed] [Google Scholar]
  24. Postma S. W., Catterall W. A. Inhibition of binding of [3H]batrachotoxinin A 20-alpha-benzoate to sodium channels by local anesthetics. Mol Pharmacol. 1984 Mar;25(2):219–227. [PubMed] [Google Scholar]
  25. Ragsdale D. S., McPhee J. C., Scheuer T., Catterall W. A. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science. 1994 Sep 16;265(5179):1724–1728. doi: 10.1126/science.8085162. [DOI] [PubMed] [Google Scholar]
  26. Reith M. E., Kim S. S., Lajtha A. Binding sites for [3H]tetracaine in synaptosomal sodium channel preparations from mouse brain. Eur J Pharmacol. 1987 Nov 10;143(2):171–178. doi: 10.1016/0014-2999(87)90530-9. [DOI] [PubMed] [Google Scholar]
  27. Thomsen W., Hays S. J., Hicks J. L., Schwarz R. D., Catterall W. A. Specific binding of the novel Na+ channel blocker PD85,639 to the alpha subunit of rat brain Na+ channels. Mol Pharmacol. 1993 Jun;43(6):955–964. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES