Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Jul;115(6):925–932. doi: 10.1111/j.1476-5381.1995.tb15899.x

Characterization of acute homologous desensitization of mu-opioid receptor-induced currents in locus coeruleus neurones.

P B Osborne 1, J T Williams 1
PMCID: PMC1908998  PMID: 7582522

Abstract

1. Acute homologous desensitization of mu-opioid receptor-induced currents was pharmacologically characterized in locus coeruleus (LC) neurones by use of intracellular and whole cell recording in superfused brain slices. 2. Following desensitization of opioid receptors by perfusion with a high concentration of [Met5] enkephalin (ME) for 5 min, there was a reduction in the maximum response and a rightward shift of the concentration-response curves for ME, [D-Ala2, N-MePhe4, Gly-ol]enkephalin (DAMGO) and normorphine. 3. By simultaneously fitting the operational model to the paired pre- and post-desensitization concentration-response data for each agonist, estimates of the level of desensitization were obtained. The values obtained for the three agonists (between 88% and 96%) were similar and did not vary according to the efficacy of the agonist used. 4. Use of whole cell patch recording techniques caused a slow rundown in the amplitude of ME currents (approx. 40% reduction over 60 min) but did not greatly affect the expression of acute desensitization of opioid currents. 5. When included in the patch recording solution, the phosphatase inhibitors, microcystin (50 nM-4 microM) and okadaic acid (1 microM) had no effect on the induction of desensitization or the normal ability of opioid or alpha 2-adrenoceptors to produce currents. Microcystin decreased the rate of recovery of the ME (300 nM) currents following desensitization; however, okadaic acid had little effect on the rate of recovery from desensitization. 6. Strong calcium buffering with BAPTA (10-20 mM) had no effect on desensitization or the recovery from desensitization.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
925

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrade R., Aghajanian G. K. Opiate- and alpha 2-adrenoceptor-induced hyperpolarizations of locus ceruleus neurons in brain slices: reversal by cyclic adenosine 3':5'-monophosphate analogues. J Neurosci. 1985 Sep;5(9):2359–2364. doi: 10.1523/JNEUROSCI.05-09-02359.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beech D. J., Bernheim L., Mathie A., Hille B. Intracellular Ca2+ buffers disrupt muscarinic suppression of Ca2+ current and M current in rat sympathetic neurons. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):652–656. doi: 10.1073/pnas.88.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhargava H. N., Gulati A. Down-regulation of brain and spinal cord mu-opiate receptors in morphine tolerant-dependent rats. Eur J Pharmacol. 1990 Nov 13;190(3):305–311. doi: 10.1016/0014-2999(90)94194-3. [DOI] [PubMed] [Google Scholar]
  4. Black J. W., Leff P., Shankley N. P., Wood J. An operational model of pharmacological agonism: the effect of E/[A] curve shape on agonist dissociation constant estimation. Br J Pharmacol. 1985 Feb;84(2):561–571. doi: 10.1111/j.1476-5381.1985.tb12941.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Capogna M., Gähwiler B. H., Thompson S. M. Mechanism of mu-opioid receptor-mediated presynaptic inhibition in the rat hippocampus in vitro. J Physiol. 1993 Oct;470:539–558. doi: 10.1113/jphysiol.1993.sp019874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen Y., Mestek A., Liu J., Hurley J. A., Yu L. Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol Pharmacol. 1993 Jul;44(1):8–12. [PubMed] [Google Scholar]
  7. Cherubini E., Morita K., North R. A. Opioid inhibition of synaptic transmission in the guinea-pig myenteric plexus. Br J Pharmacol. 1985 Aug;85(4):805–817. doi: 10.1111/j.1476-5381.1985.tb11079.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Christie M. J., Williams J. T., North R. A. Cellular mechanisms of opioid tolerance: studies in single brain neurons. Mol Pharmacol. 1987 Nov;32(5):633–638. [PubMed] [Google Scholar]
  9. Clark R. B., Friedman J., Dixon R. A., Strader C. D. Identification of a specific site required for rapid heterologous desensitization of the beta-adrenergic receptor by cAMP-dependent protein kinase. Mol Pharmacol. 1989 Sep;36(3):343–348. [PubMed] [Google Scholar]
  10. Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
  11. Dickenson A. H., Sullivan A. F. Electrophysiological studies on the effects of intrathecal morphine on nociceptive neurones in the rat dorsal horn. Pain. 1986 Feb;24(2):211–222. doi: 10.1016/0304-3959(86)90044-8. [DOI] [PubMed] [Google Scholar]
  12. Dohlman H. G., Thorner J., Caron M. G., Lefkowitz R. J. Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem. 1991;60:653–688. doi: 10.1146/annurev.bi.60.070191.003253. [DOI] [PubMed] [Google Scholar]
  13. Fowles C., Akhtar M., Cohen P. Interplay of phosphorylation and dephosphorylation in vision: protein phosphatases of bovine rod outer segments. Biochemistry. 1989 Nov 28;28(24):9385–9391. doi: 10.1021/bi00450a020. [DOI] [PubMed] [Google Scholar]
  14. Harada H., Ueda H., Wada Y., Katada T., Ui M., Satoh M. Phosphorylation of mu-opioid receptors--a putative mechanism of selective uncoupling of receptor--Gi interaction, measured with low-Km GTPase and nucleotide-sensitive agonist binding. Neurosci Lett. 1989 May 22;100(1-3):221–226. doi: 10.1016/0304-3940(89)90688-5. [DOI] [PubMed] [Google Scholar]
  15. Harris G. C., Williams J. T. Transient homologous mu-opioid receptor desensitization in rat locus coeruleus neurons. J Neurosci. 1991 Aug;11(8):2574–2581. doi: 10.1523/JNEUROSCI.11-08-02574.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hausdorff W. P., Bouvier M., O'Dowd B. F., Irons G. P., Caron M. G., Lefkowitz R. J. Phosphorylation sites on two domains of the beta 2-adrenergic receptor are involved in distinct pathways of receptor desensitization. J Biol Chem. 1989 Jul 25;264(21):12657–12665. [PubMed] [Google Scholar]
  17. Huganir R. L., Greengard P. Regulation of neurotransmitter receptor desensitization by protein phosphorylation. Neuron. 1990 Nov;5(5):555–567. doi: 10.1016/0896-6273(90)90211-w. [DOI] [PubMed] [Google Scholar]
  18. Johnson S. M., Fleming W. W. Mechanisms of cellular adaptive sensitivity changes: applications to opioid tolerance and dependence. Pharmacol Rev. 1989 Dec;41(4):435–488. [PubMed] [Google Scholar]
  19. Kennedy C., Henderson G. Mu-opioid receptor inhibition of calcium current: development of homologous tolerance in single SH-SY5Y cells after chronic exposure to morphine in vitro. Mol Pharmacol. 1991 Dec;40(6):1000–1005. [PubMed] [Google Scholar]
  20. Law P. Y., Hom D. S., Loh H. H. Opiate receptor down-regulation and desensitization in neuroblastoma X glioma NG108-15 hybrid cells are two separate cellular adaptation processes. Mol Pharmacol. 1983 Nov;24(3):413–424. [PubMed] [Google Scholar]
  21. Leff P. Analysis of agonist action using the operational model. Trends Pharmacol Sci. 1988 Nov;9(11):395–398. doi: 10.1016/0165-6147(88)90065-x. [DOI] [PubMed] [Google Scholar]
  22. Lefkowitz R. J., Hausdorff W. P., Caron M. G. Role of phosphorylation in desensitization of the beta-adrenoceptor. Trends Pharmacol Sci. 1990 May;11(5):190–194. doi: 10.1016/0165-6147(90)90113-m. [DOI] [PubMed] [Google Scholar]
  23. Lohse M. J., Benovic J. L., Caron M. G., Lefkowitz R. J. Multiple pathways of rapid beta 2-adrenergic receptor desensitization. Delineation with specific inhibitors. J Biol Chem. 1990 Feb 25;265(6):3202–3211. [PubMed] [Google Scholar]
  24. Louie A. K., Zhan J. N., Law P. Y., Loh H. H. Modification of opioid receptor activity by acid phosphatase in neuroblastoma x glioma NG108-15 hybrid cells. Biochem Biophys Res Commun. 1988 May 16;152(3):1369–1375. doi: 10.1016/s0006-291x(88)80436-4. [DOI] [PubMed] [Google Scholar]
  25. MacKintosh C., Beattie K. A., Klumpp S., Cohen P., Codd G. A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 1990 May 21;264(2):187–192. doi: 10.1016/0014-5793(90)80245-e. [DOI] [PubMed] [Google Scholar]
  26. North R. A., Williams J. T. On the potassium conductance increased by opioids in rat locus coeruleus neurones. J Physiol. 1985 Jul;364:265–280. doi: 10.1113/jphysiol.1985.sp015743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Palczewski K., Benovic J. L. G-protein-coupled receptor kinases. Trends Biochem Sci. 1991 Oct;16(10):387–391. doi: 10.1016/0968-0004(91)90157-q. [DOI] [PubMed] [Google Scholar]
  28. Palczewski K., Hargrave P. A., McDowell J. H., Ingebritsen T. S. The catalytic subunit of phosphatase 2A dephosphorylates phosphoopsin. Biochemistry. 1989 Jan 24;28(2):415–419. doi: 10.1021/bi00428a001. [DOI] [PubMed] [Google Scholar]
  29. Puttfarcken P. S., Werling L. L., Cox B. M. Effects of chronic morphine exposure on opioid inhibition of adenylyl cyclase in 7315c cell membranes: a useful model for the study of tolerance at mu opioid receptors. Mol Pharmacol. 1988 May;33(5):520–527. [PubMed] [Google Scholar]
  30. Thompson R. C., Mansour A., Akil H., Watson S. J. Cloning and pharmacological characterization of a rat mu opioid receptor. Neuron. 1993 Nov;11(5):903–913. doi: 10.1016/0896-6273(93)90120-g. [DOI] [PubMed] [Google Scholar]
  31. Vachon L., Costa T., Herz A. GTPase and adenylate cyclase desensitize at different rates in NG108-15 cells. Mol Pharmacol. 1987 Feb;31(2):159–168. [PubMed] [Google Scholar]
  32. Werling L. L., McMahon P. N., Cox B. M. Selective changes in mu opioid receptor properties induced by chronic morphine exposure. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6393–6397. doi: 10.1073/pnas.86.16.6393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Williams J. T., Christie M. J., North R. A., Roques B. P. Potentiation of enkephalin action by peptidase inhibitors in rat locus ceruleus in vitro. J Pharmacol Exp Ther. 1987 Oct;243(1):397–401. [PubMed] [Google Scholar]
  34. Williams J. T., North R. A. Opiate-receptor interactions on single locus coeruleus neurones. Mol Pharmacol. 1984 Nov;26(3):489–497. [PubMed] [Google Scholar]
  35. Williams J. T., North R. A. Opiate-receptor interactions on single locus coeruleus neurones. Mol Pharmacol. 1984 Nov;26(3):489–497. [PubMed] [Google Scholar]
  36. Williams J. T., North R. A., Tokimasa T. Inward rectification of resting and opiate-activated potassium currents in rat locus coeruleus neurons. J Neurosci. 1988 Nov;8(11):4299–4306. doi: 10.1523/JNEUROSCI.08-11-04299.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wyllie D. J., Nicoll R. A. A role for protein kinases and phosphatases in the Ca(2+)-induced enhancement of hippocampal AMPA receptor-mediated synaptic responses. Neuron. 1994 Sep;13(3):635–643. doi: 10.1016/0896-6273(94)90031-0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES