Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Nov;116(5):2375–2384. doi: 10.1111/j.1476-5381.1995.tb15083.x

Changes in benzodiazepine-GABA receptor coupling in an accumbens-habenula circuit after chronic diazepam treatment.

R R Brett 1, J A Pratt 1
PMCID: PMC1909033  PMID: 8581272

Abstract

1. The effects of subacute and of chronic diazepam treatment upon binding to the GABAA receptor have been examined by use of receptor autoradiography for determining flunitrazepam (FNZP) binding, GABA enhancement of FNZP binding. SR 95531 2-(3'-carboxy-2',propyl)-3-amino-6-p-methoxyphenylpyridazinium bromide) binding and GABA binding in parallel sections from rat brain. Prior to the autoradiographic procedures, a behavioural assessment of the rats was made in the elevated plus-maze test of anxiety. 2. Rats receiving diazepam either subacutely (3 days) or chronically (28 days) by both continuous release, from previously implanted subcutaneous silastic capsules, or by daily injection (5 mg kg-1) did not display changes in FNZP or GABA binding in any of the 47 brain structures analysed. Similarly, there were no significant effects of treatment upon mean total entries or on the open:total ratio for entries in the elevated plus-maze. 3. There were reductions in the GABA enhancement of FNZP binding in the nucleus accumbens and central grey after subacute diazepam treatment. This effect persisted in the nucleus accumbens after chronic treatment. Less marked effects occurred in the lateral habenula, dorsal raphe and substantia nigra pars compacta. In the dorsal tegmental nucleus, GABA enhancement of FNZP binding was enhanced after chronic treatment and this was accompanied by reductions in SR 95531 binding. Treatment did not otherwise affect SR 95531 binding, with the exception of the dorsal raphe where binding was decreased after subacute treatment. 4. In general, the patterns of binding produced by the two different treatment routes were very similar. However, SR 95531 binding was lower in certain hippocampal fields in the i.p. treated animals compared to the rats implanted with silastic capsules. 5. It is concluded that repeated administration of diazepam evokes changes in benzodiazepine and GABA receptor coupling, and to a lesser extent changes in low affinity GABA binding, in certain interrelated brain structures of which an accumbens-habenula circuit is a central feature. These changes occur soon after the initiation of diazepam treatment, suggesting that they are unlikely to account for tolerance to the anxiolytic effects of diazepam but may trigger and/or accompany other critical neurochemical events.

Full text

PDF
2375

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan A. M., Baier L. D., Zhang X. Effects of lorazepam tolerance and withdrawal on GABAA receptor-operated chloride channels. J Pharmacol Exp Ther. 1992 May;261(2):395–402. [PubMed] [Google Scholar]
  2. Brett R. R., Pratt J. A. Chronic handling modifies the anxiolytic effect of diazepam in the elevated plus-maze. Eur J Pharmacol. 1990 Mar 13;178(1):135–138. doi: 10.1016/0014-2999(90)94806-9. [DOI] [PubMed] [Google Scholar]
  3. Bristow D. R., Martin I. L. Light microscopic autoradiographic localisation in rat brain of the binding sites for the GABAA receptor antagonist [3H]SR 95531: comparison with the [3H]GABAA receptor distribution. Eur J Pharmacol. 1988 Mar 29;148(2):283–288. doi: 10.1016/0014-2999(88)90576-6. [DOI] [PubMed] [Google Scholar]
  4. Chan C. Y., Farb D. H. Modulation of neurotransmitter action: control of the gamma-aminobutyric acid response through the benzodiazepine receptor. J Neurosci. 1985 Sep;5(9):2365–2373. doi: 10.1523/JNEUROSCI.05-09-02365.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chiu T. H., Rosenberg H. C. Reduced diazepam binding following chronic benzodiazepine treatment. Life Sci. 1978 Sep 18;23(11):1153–1157. doi: 10.1016/0024-3205(78)90349-1. [DOI] [PubMed] [Google Scholar]
  6. Corda M. G., Biggio G. Stress and GABAergic transmission: biochemical and behavioural studies. Adv Biochem Psychopharmacol. 1986;41:121–136. [PubMed] [Google Scholar]
  7. Dawson G. R., Tricklebank M. D. Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol Sci. 1995 Feb;16(2):33–36. doi: 10.1016/s0165-6147(00)88973-7. [DOI] [PubMed] [Google Scholar]
  8. Erdö S. L., Mione M. C., Amenta F., Wolff J. R. Binding of [3H]-muscimol to GABAA sites in the guinea-pig urinary bladder: biochemical assay and autoradiography. Br J Pharmacol. 1989 Feb;96(2):313–318. doi: 10.1111/j.1476-5381.1989.tb11819.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Friedman H., Abernethy D. R., Greenblatt D. J., Shader R. I. The pharmacokinetics of diazepam and desmethyldiazepam in rat brain and plasma. Psychopharmacology (Berl) 1986;88(3):267–270. doi: 10.1007/BF00180822. [DOI] [PubMed] [Google Scholar]
  10. Gallager D. W., Lakoski J. M., Gonsalves S. F., Rauch S. L. Chronic benzodiazepine treatment decreases postsynaptic GABA sensitivity. Nature. 1984 Mar 1;308(5954):74–77. doi: 10.1038/308074a0. [DOI] [PubMed] [Google Scholar]
  11. Gallager D. W., Malcolm A. B., Anderson S. A., Gonsalves S. F. Continuous release of diazepam: electrophysiological, biochemical and behavioral consequences. Brain Res. 1985 Sep 2;342(1):26–36. doi: 10.1016/0006-8993(85)91349-6. [DOI] [PubMed] [Google Scholar]
  12. Gallager D. W., Rauch S. L., Malcolm A. B. Alterations in a low affinity GABA recognition site following chronic benzodiazepine treatment. Eur J Pharmacol. 1984 Feb 10;98(1):159–160. doi: 10.1016/0014-2999(84)90129-8. [DOI] [PubMed] [Google Scholar]
  13. Geary W. A., 2nd, Wooten G. F. Regional tritium quenching in quantitative autoradiography of the central nervous system. Brain Res. 1985 Jun 17;336(2):334–336. doi: 10.1016/0006-8993(85)90662-6. [DOI] [PubMed] [Google Scholar]
  14. Greenblatt D. J., Shader R. I. Long-term administration of benzodiazepines: pharmacokinetic versus pharmacodynamic tolerance. Psychopharmacol Bull. 1986;22(2):416–423. [PubMed] [Google Scholar]
  15. Handley S. L., McBlane J. W. An assessment of the elevated X-maze for studying anxiety and anxiety-modulating drugs. J Pharmacol Toxicol Methods. 1993 Jun;29(3):129–138. doi: 10.1016/1056-8719(93)90063-k. [DOI] [PubMed] [Google Scholar]
  16. Heaulme M., Chambon J. P., Leyris R., Wermuth C. G., Biziere K. Characterization of the binding of [3H]SR 95531, a GABAA antagonist, to rat brain membranes. J Neurochem. 1987 Jun;48(6):1677–1686. doi: 10.1111/j.1471-4159.1987.tb05723.x. [DOI] [PubMed] [Google Scholar]
  17. Heninger C., Gallager D. W. Altered gamma-aminobutyric acid/benzodiazepine interaction after chronic diazepam exposure. Neuropharmacology. 1988 Oct;27(10):1073–1076. doi: 10.1016/0028-3908(88)90070-6. [DOI] [PubMed] [Google Scholar]
  18. Heninger C., Saito N., Tallman J. F., Garrett K. M., Vitek M. P., Duman R. S., Gallager D. W. Effects of continuous diazepam administration on GABAA subunit mRNA in rat brain. J Mol Neurosci. 1990;2(2):101–107. doi: 10.1007/BF02876917. [DOI] [PubMed] [Google Scholar]
  19. Ishihara S., Hiramatsu M., Kameyama T., Nabeshima T. Development of tolerance to anxiolytic effects of chlordiazepoxide in elevated plus-maze test and decrease of GABAA receptors. J Neural Transm Gen Sect. 1993;91(1):27–37. doi: 10.1007/BF01244916. [DOI] [PubMed] [Google Scholar]
  20. Kang I., Miller L. G. Decreased GABAA receptor subunit mRNA concentrations following chronic lorazepam administration. Br J Pharmacol. 1991 Jun;103(2):1285–1287. doi: 10.1111/j.1476-5381.1991.tb09781.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Koob G. F. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992 May;13(5):177–184. doi: 10.1016/0165-6147(92)90060-j. [DOI] [PubMed] [Google Scholar]
  22. Laurie D. J., Pratt J. A. Flumazenil induces localised increases in glucose utilization during diazepam withdrawal in rats. Brain Res. 1993 Dec 24;631(2):277–286. doi: 10.1016/0006-8993(93)91546-5. [DOI] [PubMed] [Google Scholar]
  23. Laurie D. J., Pratt J. A. Local cerebral glucose utilization following subacute and chronic diazepam pretreatment: differential tolerance. Brain Res. 1989 Dec 11;504(1):101–111. doi: 10.1016/0006-8993(89)91603-x. [DOI] [PubMed] [Google Scholar]
  24. Laurie D. J., Seeburg P. H., Wisden W. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J Neurosci. 1992 Mar;12(3):1063–1076. doi: 10.1523/JNEUROSCI.12-03-01063.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marangos P. J., Crawley J. N. Chronic benzodiazepine treatment increases [3H]muscimol binding in mouse brain. Neuropharmacology. 1982 Jan;21(1):81–84. doi: 10.1016/0028-3908(82)90215-5. [DOI] [PubMed] [Google Scholar]
  26. Marcel D., Weissmann-Nanopoulos D., Mach E., Pujol J. F. Benzodiazepine binding sites: localization and characterization in the limbic system of the rat brain. Brain Res Bull. 1986 May;16(5):573–596. doi: 10.1016/0361-9230(86)90132-2. [DOI] [PubMed] [Google Scholar]
  27. McCabe R. T., Olsen R. W., Yezuita J. P., Wamsley J. K. Osmotic shock: a method to eliminate endogenous gamma-aminobutyric acid and account for the influence on benzodiazepine binding affinity in autoradiographic studies. J Pharmacol Exp Ther. 1988 Apr;245(1):342–349. [PubMed] [Google Scholar]
  28. McCabe R. T., Wamsley J. K., Yezuita J. P., Olsen R. W. A novel GABAA antagonist [3H]SR 95531: microscopic analysis of binding in the rat brain and allosteric modulation by several benzodiazepine and barbiturate receptor ligands. Synapse. 1988;2(2):163–173. doi: 10.1002/syn.890020208. [DOI] [PubMed] [Google Scholar]
  29. Mele L., Sagratella S., Massotti M. Chronic administration of diazepam to rats causes changes in EEG patterns and in coupling between GABA receptors and benzodiazepine binding sites in vitro. Brain Res. 1984 Dec 3;323(1):93–102. doi: 10.1016/0006-8993(84)90268-3. [DOI] [PubMed] [Google Scholar]
  30. Mennini T., Gobbi M. Regional distribution of low-affinity GABA receptors coupled to benzodiazepine receptor subtypes in rat brain: an autoradiographic evaluation. Eur J Pharmacol. 1990 Sep 18;189(2-3):143–148. doi: 10.1016/0922-4106(90)90018-s. [DOI] [PubMed] [Google Scholar]
  31. Miller L. G., Greenblatt D. J., Barnhill J. G., Shader R. I. Chronic benzodiazepine administration. I. Tolerance is associated with benzodiazepine receptor downregulation and decreased gamma-aminobutyric acidA receptor function. J Pharmacol Exp Ther. 1988 Jul;246(1):170–176. [PubMed] [Google Scholar]
  32. Miller L. G., Greenblatt D. J., Roy R. B., Summer W. R., Shader R. I. Chronic benzodiazepine administration. II. Discontinuation syndrome is associated with upregulation of gamma-aminobutyric acidA receptor complex binding and function. J Pharmacol Exp Ther. 1988 Jul;246(1):177–182. [PubMed] [Google Scholar]
  33. Möhler H., Okada T., Enna S. J. Benzodiasepine and neurotransmitter receptor binding in rat brain after chronic administration of diazepam or phenobarbital. Brain Res. 1978 Nov 10;156(2):391–395. doi: 10.1016/0006-8993(78)90526-7. [DOI] [PubMed] [Google Scholar]
  34. Niehoff D. L., Kuhar M. J. Benzodiazepine receptors: localization in rat amygdala. J Neurosci. 1983 Oct;3(10):2091–2097. doi: 10.1523/JNEUROSCI.03-10-02091.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. O'Donovan M. C., Buckland P. R., Spurlock G., McGuffin P. Bi-directional changes in the levels of messenger RNAs encoding gamma-aminobutyric acidA receptor alpha subunits after flurazepam treatment. Eur J Pharmacol. 1992 Aug 3;226(4):335–341. doi: 10.1016/0922-4106(92)90051-v. [DOI] [PubMed] [Google Scholar]
  36. Olsen R. W., McCabe R. T., Wamsley J. K. GABAA receptor subtypes: autoradiographic comparison of GABA, benzodiazepine, and convulsant binding sites in the rat central nervous system. J Chem Neuroanat. 1990 Jan-Feb;3(1):59–76. [PubMed] [Google Scholar]
  37. Puia G., Vicini S., Seeburg P. H., Costa E. Influence of recombinant gamma-aminobutyric acid-A receptor subunit composition on the action of allosteric modulators of gamma-aminobutyric acid-gated Cl- currents. Mol Pharmacol. 1991 Jun;39(6):691–696. [PubMed] [Google Scholar]
  38. Rosenberg H. C., Chiu T. H. Tolerance during chronic benzodiazepine treatment associated with decreased receptor binding. Eur J Pharmacol. 1981 Apr 9;70(4):453–460. doi: 10.1016/0014-2999(81)90356-3. [DOI] [PubMed] [Google Scholar]
  39. Ruano D., Benavides J., Machado A., Vitorica J. Regional differences in the enhancement by GABA of [3H]zolpidem binding to omega 1 sites in rat brain membranes and sections. Brain Res. 1993 Jan 8;600(1):134–140. doi: 10.1016/0006-8993(93)90411-f. [DOI] [PubMed] [Google Scholar]
  40. Sieghart W. GABAA receptors: ligand-gated Cl- ion channels modulated by multiple drug-binding sites. Trends Pharmacol Sci. 1992 Dec;13(12):446–450. doi: 10.1016/0165-6147(92)90142-s. [DOI] [PubMed] [Google Scholar]
  41. Skerritt J. H., Johnston G. A. Enhancement of GABA binding by benzodiazepines and related anxiolytics. Eur J Pharmacol. 1983 May 6;89(3-4):193–198. doi: 10.1016/0014-2999(83)90494-6. [DOI] [PubMed] [Google Scholar]
  42. Skerritt J. H., Willow M., Johnston G. A. Diazepam enhancement of low affinity GABA binding to rat brain membranes. Neurosci Lett. 1982 Mar 17;29(1):63–66. doi: 10.1016/0304-3940(82)90365-2. [DOI] [PubMed] [Google Scholar]
  43. Stephens D. N., Schneider H. H. Tolerance to the benzodiazepine diazepam in an animal model of anxiolytic activity. Psychopharmacology (Berl) 1985;87(3):322–327. doi: 10.1007/BF00432715. [DOI] [PubMed] [Google Scholar]
  44. Swope S. L., Moss S. J., Blackstone C. D., Huganir R. L. Phosphorylation of ligand-gated ion channels: a possible mode of synaptic plasticity. FASEB J. 1992 May;6(8):2514–2523. [PubMed] [Google Scholar]
  45. Tietz E. I., Chiu T. H., Rosenberg H. C. Regional GABA/benzodiazepine receptor/chloride channel coupling after acute and chronic benzodiazepine treatment. Eur J Pharmacol. 1989 Aug 11;167(1):57–65. doi: 10.1016/0014-2999(89)90747-4. [DOI] [PubMed] [Google Scholar]
  46. Tietz E. I., Huang X., Weng X., Rosenberg H. C., Chiu T. H. Expression of alpha 1, alpha 5, and gamma 2 GABAA receptor subunit mRNAs measured in situ in rat hippocampus and cortex following chronic flurazepam administration. J Mol Neurosci. 1993 Winter;4(4):277–292. doi: 10.1007/BF02821559. [DOI] [PubMed] [Google Scholar]
  47. Tietz E. I., Rosenberg H. C., Chiu T. H. Autoradiographic localization of benzodiazepine receptor downregulation. J Pharmacol Exp Ther. 1986 Jan;236(1):284–292. [PubMed] [Google Scholar]
  48. Unnerstall J. R., Kuhar M. J., Niehoff D. L., Palacios J. M. Benzodiazepine receptors are coupled to a subpopulation of gamma-aminobutyric acid (GABA) receptors: evidence from a quantitative autoradiographic study. J Pharmacol Exp Ther. 1981 Sep;218(3):797–804. [PubMed] [Google Scholar]
  49. Wisden W., Laurie D. J., Monyer H., Seeburg P. H. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci. 1992 Mar;12(3):1040–1062. doi: 10.1523/JNEUROSCI.12-03-01040.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Young W. S., 3rd, Kuhar M. J. Radiohistochemical localization of benzodiazepine receptors in rat brain. J Pharmacol Exp Ther. 1980 Feb;212(2):337–346. [PubMed] [Google Scholar]
  51. Zhao T. J., Chiu T. H., Rosenberg H. C. Reduced expression of gamma-aminobutyric acid type A/benzodiazepine receptor gamma 2 and alpha 5 subunit mRNAs in brain regions of flurazepam-treated rats. Mol Pharmacol. 1994 Apr;45(4):657–663. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES