Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Nov;116(5):2468–2472. doi: 10.1111/j.1476-5381.1995.tb15097.x

Effects of besipirdine at the voltage-dependent sodium channel.

L Tang 1, C P Smith 1, F P Huger 1, S Kongsamut 1
PMCID: PMC1909035  PMID: 8581286

Abstract

1. Besipirdine (HP 749) is a compound undergoing clinical trials for efficacy in treating Alzheimer's disease. Among other pharmacological effects, besipirdine inhibits voltage-dependent sodium and potassium channels. This paper presents a pharmacological study of the interaction of besipirdine with voltage-dependent sodium channels. 2. Besipirdine inhibited [3H]-batrachotoxin binding (IC50 = 5.5 +/- 0.2 microM) in a rat brain vesicular preparation and concentration-dependently inhibited veratridine (25 microM)-stimulated increases in intracellular free sodium ([Na+]i) and calcium ([Ca2+]i) in primary cultured cortical neurones of rat. 3. Besipirdine (30-100 microM) concentration-dependently inhibited (up to 100%) veratridine-stimulated release of [3H]-noradrenaline (NA) from rat cortical slices. 4. When examined in greater detail, besipirdine was found to inhibit [3H]-batrachotoxin binding in vesicular membranes competitively. However, when examined in rat brain synaptosomes, we found that the antagonism by besipirdine was not competitive; that is, the maximal stimulation of [Ca2+]i induced by veratridine decreased with increasing concentrations of besipirdine. 5. These results show that besipirdine is an inhibitor of voltage-sensitive sodium channels and appears to bind to a site close to the batrachotoxin/veratridine binding site.

Full text

PDF
2468

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown G. B. 3H-batrachotoxinin-A benzoate binding to voltage-sensitive sodium channels: inhibition by the channel blockers tetrodotoxin and saxitoxin. J Neurosci. 1986 Jul;6(7):2064–2070. doi: 10.1523/JNEUROSCI.06-07-02064.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown G. B. Batrachotoxin: a window on the allosteric nature of the voltage-sensitive sodium channel. Int Rev Neurobiol. 1988;29:77–116. doi: 10.1016/s0074-7742(08)60084-7. [DOI] [PubMed] [Google Scholar]
  3. Catterall W. A. Activation of the action potential Na+ ionophore by neurotoxins. An allosteric model. J Biol Chem. 1977 Dec 10;252(23):8669–8676. [PubMed] [Google Scholar]
  4. Catterall W. A. Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem. 1986;55:953–985. doi: 10.1146/annurev.bi.55.070186.004513. [DOI] [PubMed] [Google Scholar]
  5. Catterall W. A., Morrow C. S., Daly J. W., Brown G. B. Binding of batrachotoxinin A 20-alpha-benzoate to a receptor site associated with sodium channels in synaptic nerve ending particles. J Biol Chem. 1981 Sep 10;256(17):8922–8927. [PubMed] [Google Scholar]
  6. Choi D. W. Ionic dependence of glutamate neurotoxicity. J Neurosci. 1987 Feb;7(2):369–379. doi: 10.1523/JNEUROSCI.07-02-00369.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Creveling C. R., McNeal E. T., Daly J. W., Brown G. B. Batrachotoxin-induced depolarization and [3H]batrachotoxinin-a 20 alpha-benzoate binding in a vesicular preparation from guinea pig cerebral cortex. Mol Pharmacol. 1983 Mar;23(2):350–358. [PubMed] [Google Scholar]
  8. Evans D. A., Funkenstein H. H., Albert M. S., Scherr P. A., Cook N. R., Chown M. J., Hebert L. E., Hennekens C. H., Taylor J. O. Prevalence of Alzheimer's disease in a community population of older persons. Higher than previously reported. JAMA. 1989 Nov 10;262(18):2551–2556. [PubMed] [Google Scholar]
  9. Fischer W., Bodewei R., Satzinger G. Anticonvulsant and sodium channel blocking effects of ralitoline in different screening models. Naunyn Schmiedebergs Arch Pharmacol. 1992 Oct;346(4):442–452. doi: 10.1007/BF00171088. [DOI] [PubMed] [Google Scholar]
  10. Kongsamut S., Nachshen D. A. Measurement of the cytosolic sodium ion concentration in rat brain synaptosomes by a fluorescence method. Biochim Biophys Acta. 1988 May 24;940(2):241–246. doi: 10.1016/0005-2736(88)90198-8. [DOI] [PubMed] [Google Scholar]
  11. Lang D. G., Wang C. M., Cooper B. R. Lamotrigine, phenytoin and carbamazepine interactions on the sodium current present in N4TG1 mouse neuroblastoma cells. J Pharmacol Exp Ther. 1993 Aug;266(2):829–835. [PubMed] [Google Scholar]
  12. Roufos I., Hays S. J., Dooley D. J., Schwarz R. D., Campbell G. W., Probert A. W., Jr Synthesis and pharmacological evaluation of phenylacetamides as sodium-channel blockers. J Med Chem. 1994 Jan 21;37(2):268–274. doi: 10.1021/jm00028a010. [DOI] [PubMed] [Google Scholar]
  13. Sheldon R. S., Duff H. J., Thakore E., Hill R. J. Class I antiarrhythmic drugs: allosteric inhibitors of [3H] batrachotoxinin binding to rat cardiac sodium channels. J Pharmacol Exp Ther. 1994 Jan;268(1):187–194. [PubMed] [Google Scholar]
  14. Smith C. P., Huger F. P., Petko W., Kongsamut S. HP 749 enhances calcium-independent release of [3H]norepinephrine from rat cortical slices and synaptosomes. Neurochem Res. 1994 Oct;19(10):1265–1270. doi: 10.1007/BF01006816. [DOI] [PubMed] [Google Scholar]
  15. WOODBURY L. A., DAVENPORT V. D. Design and use of a new electroshock seizure apparatus, and analysis of factors altering seizure threshold and pattern. Arch Int Pharmacodyn Ther. 1952 Oct 1;92(1):97–107. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES