Abstract
1. Frusemide is removed from the body by biotransformation and renal secretion, but since frusemide metabolism is not altered in patients with hepatic cirrhosis, the role of the liver may be questioned. The aim of the study was to investigate which organs contribute to the first-pass metabolism and systemic clearance of frusemide. 2. Groups of anaesthetized New Zealand rabbits were administered frusemide proximally (prox) and distally (dist) to different organs, and blood was sampled from the abdominal aorta. The area under frusemide plasma concentrations-time curve (AUC0-infinity) was calculated and frusemide extraction by an organ was estimated from the ratio (AUCdist-AUCprox)/AUCdist. The small intestine extracted 83% of the absorbed dose of frusemide but the first-pass uptake by the liver and lungs was negligible. 3. To assess the contribution of the intestine and the kidneys to the systemic clearance of frusemide, it was injected into the jugular vein and blood was sampled proximal and distal to each organ. The kidneys extracted 24% of frusemide circulating in the renal arteries; on the other hand, the ability of the intestine to extract frusemide from the systemic circulation could not be detected. 4. The lungs did not metabolize frusemide in vitro; the rate of metabolism of frusemide in vitro by kidneys was similar to that estimated in the intestine, and both rates were faster (P < 0.05) than that observed in the liver. 5. It is concluded that in rabbits, presystemic metabolism of frusemide is carried out by the intestine, and that systemic clearance of frusemide is mainly performed by the kidneys, although other organs, such as the intestine and the liver, must contribute to it.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreasen F., Mikkelsen E. Distribution, elimination and effect of furosemide in normal subjects and in patients with heart failure. Eur J Clin Pharmacol. 1977 Aug 17;12(1):15–22. doi: 10.1007/BF00561400. [DOI] [PubMed] [Google Scholar]
- Babini R., du Souich P. Furosemide pharmacodynamics: effect of respiratory and acid-base disturbances. J Pharmacol Exp Ther. 1986 May;237(2):623–628. [PubMed] [Google Scholar]
- Cassidy M. K., Houston J. B. In vivo assessment of extrahepatic conjugative metabolism in first pass effects using the model compound phenol. J Pharm Pharmacol. 1980 Jan;32(1):57–59. doi: 10.1111/j.2042-7158.1980.tb12846.x. [DOI] [PubMed] [Google Scholar]
- Cutler R. E., Forrey A. W., Christopher T. G., Kimpel B. M. Pharmacokinetics of furosemide in normal subjects and functionally anephric patients. Clin Pharmacol Ther. 1974 Jun;15(6):588–596. doi: 10.1002/cpt1974156588. [DOI] [PubMed] [Google Scholar]
- De Bernardi M., Ferrara A., Manzo L. Aspetti dell farmacometabolismo polmonare nel coniglio adulto. Boll Soc Ital Biol Sper. 1972 Mar 15;48(5):102–105. [PubMed] [Google Scholar]
- Fuller R., Hoppel C., Ingalls S. T. Furosemide kinetics in patients with hepatic cirrhosis with ascites. Clin Pharmacol Ther. 1981 Oct;30(4):461–467. doi: 10.1038/clpt.1981.189. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. J. Human cytochromes P450: problems and prospects. Trends Pharmacol Sci. 1992 Sep;13(9):346–352. doi: 10.1016/0165-6147(92)90107-h. [DOI] [PubMed] [Google Scholar]
- Gram T. E., Litterst C. L., Mimnaugh E. G. Enzymatic conjugation of foreign chemical compounds by rabbit lung and liver. Drug Metab Dispos. 1974 May-Jun;2(3):254–258. [PubMed] [Google Scholar]
- Guengerich F. P. Human cytochrome P-450 enzymes. Life Sci. 1992;50(20):1471–1478. doi: 10.1016/0024-3205(92)90136-d. [DOI] [PubMed] [Google Scholar]
- Hammarlund-Udenaes M., Benet L. Z. Furosemide pharmacokinetics and pharmacodynamics in health and disease--an update. J Pharmacokinet Biopharm. 1989 Feb;17(1):1–46. doi: 10.1007/BF01059086. [DOI] [PubMed] [Google Scholar]
- Homeida M., Roberts C., Branch R. A. Influence of probenecid and spironolactone on furosemide kinetics and dynamics in man. Clin Pharmacol Ther. 1977 Oct;22(4):402–409. doi: 10.1002/cpt1977224402. [DOI] [PubMed] [Google Scholar]
- Huang C. M., Atkinson A. J., Jr, Levin M., Levin N. W., Quintanilla A. Pharmacokinetics of furosemide in advanced renal failure. Clin Pharmacol Ther. 1974 Oct;16(4):659–666. doi: 10.1002/cpt1974164659. [DOI] [PubMed] [Google Scholar]
- Kerremans A. L., Tan Y., van Baars H., van Ginneken C. A., Gribnau F. W. Furosemide kinetics and dynamics in aged patients. Clin Pharmacol Ther. 1983 Aug;34(2):181–189. doi: 10.1038/clpt.1983.150. [DOI] [PubMed] [Google Scholar]
- Krishna D. R., Klotz U. Extrahepatic metabolism of drugs in humans. Clin Pharmacokinet. 1994 Feb;26(2):144–160. doi: 10.2165/00003088-199426020-00007. [DOI] [PubMed] [Google Scholar]
- Lambert C., Caillé G., du Souich P. Nonrenal clearance of furosemide as a cause of diuretic response variability in the rat. J Pharmacol Exp Ther. 1982 Jul;222(1):232–236. [PubMed] [Google Scholar]
- Lee M. G., Chiou W. L. Evaluation of potential causes for the incomplete bioavailability of furosemide: gastric first-pass metabolism. J Pharmacokinet Biopharm. 1983 Dec;11(6):623–640. doi: 10.1007/BF01059061. [DOI] [PubMed] [Google Scholar]
- Mistry M., Houston J. B. Quantitation of extrahepatic metabolism. Pulmonary and intestinal conjugation of naphthol. Drug Metab Dispos. 1985 Nov-Dec;13(6):740–745. [PubMed] [Google Scholar]
- Pacifici G. M., Franchi M., Bencini C., Repetti F., Di Lascio N., Muraro G. B. Tissue distribution of drug-metabolizing enzymes in humans. Xenobiotica. 1988 Jul;18(7):849–856. doi: 10.3109/00498258809041723. [DOI] [PubMed] [Google Scholar]
- Perreault S., Dumont L., Villiere V., Ong H., Adam A., du Souich P. Hepatic and extrahepatic metabolism of salbutamol in anesthetized rabbits. Drug Metab Dispos. 1993 May-Jun;21(3):485–491. [PubMed] [Google Scholar]
- Ponto L. L., Schoenwald R. D. Furosemide (frusemide). A pharmacokinetic/pharmacodynamic review (Part I). Clin Pharmacokinet. 1990 May;18(5):381–408. doi: 10.2165/00003088-199018050-00004. [DOI] [PubMed] [Google Scholar]
- Prandota J., Pruitt A. W. Pharmacokinetic, biliary excretion, and metabolic studies of 14C-furosemide in the rat. Xenobiotica. 1991 Jun;21(6):725–736. doi: 10.3109/00498259109039512. [DOI] [PubMed] [Google Scholar]
- Rakhit A., Kochak G. M., Tipnis V., Hurley M. E. Inhibition of renal clearance of furosemide by pentopril, an angiotensin-converting enzyme inhibitor. Clin Pharmacol Ther. 1987 May;41(5):580–586. doi: 10.1038/clpt.1987.75. [DOI] [PubMed] [Google Scholar]
- Roth R. A. Biochemistry, physiology and drug metabolism--implications regarding the role of the lungs in drug disposition. Clin Physiol Biochem. 1985;3(2-3):66–79. [PubMed] [Google Scholar]
- Sawhney V. K., Gregory P. B., Swezey S. E., Blaschke T. F. Furosemide disposition in cirrhotic patients. Gastroenterology. 1981 Dec;81(6):1012–1016. [PubMed] [Google Scholar]
- Schmitt S. L., Taylor K., Schmidt R., Van Orden D., Williamson H. E. The role of volume depletion, antidiuretic hormone and angiotensin II in the furosemide-induced decrease in mesenteric conductance in the dog. J Pharmacol Exp Ther. 1981 Nov;219(2):407–414. [PubMed] [Google Scholar]
- Smith D. E., Benet L. Z. Biotransformation of furosemide in kidney transplant patients. Eur J Clin Pharmacol. 1983;24(6):787–790. doi: 10.1007/BF00607088. [DOI] [PubMed] [Google Scholar]
- Tam Y. K. Individual variation in first-pass metabolism. Clin Pharmacokinet. 1993 Oct;25(4):300–328. doi: 10.2165/00003088-199325040-00005. [DOI] [PubMed] [Google Scholar]
- Traber P. G., Chianale J., Florence R., Kim K., Wojcik E., Gumucio J. J. Expression of cytochrome P450b and P450e genes in small intestinal mucosa of rats following treatment with phenobarbital, polyhalogenated biphenyls, and organochlorine pesticides. J Biol Chem. 1988 Jul 5;263(19):9449–9455. [PubMed] [Google Scholar]
- Verbeeck R. K., Gerkens J. F., Wilkinson G. R., Branch R. A. Disposition of furosemide in functionally hepatectomized dogs. J Pharmacol Exp Ther. 1981 Mar;216(3):479–483. [PubMed] [Google Scholar]
- Wilson A. G., Pickett R. D., Eling T. E., Anderson M. W. Studies on the persistence of basic amines in the rabbit lung. Drug Metab Dispos. 1979 Nov-Dec;7(6):420–424. [PubMed] [Google Scholar]
- Zhu J. B., Koizumi T. The diuretic effect of furosemide in relation to its disposition in man. J Pharmacobiodyn. 1987 Aug;10(8):377–383. doi: 10.1248/bpb1978.10.377. [DOI] [PubMed] [Google Scholar]
- de Waziers I., Cugnenc P. H., Yang C. S., Leroux J. P., Beaune P. H. Cytochrome P 450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. J Pharmacol Exp Ther. 1990 Apr;253(1):387–394. [PubMed] [Google Scholar]
