Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Nov;116(5):2538–2544. doi: 10.1111/j.1476-5381.1995.tb15107.x

Application of intracerebral microdialysis to study regional distribution kinetics of drugs in rat brain.

E C de Lange 1, M R Bouw 1, J W Mandema 1, M Danhof 1, A G de Boer 1, D D Breimer 1
PMCID: PMC1909064  PMID: 8581296

Abstract

1. The purpose of the present study was to determine whether intracerebral microdialysis can be used for the assessment of local differences in drug concentrations within the brain. 2. Two transversal microdialysis probes were implanted in parallel into the frontal cortex of male Wistar rats, and used as a local infusion and detection device respectively. Within one rat, three different concentrations of atenolol or acetaminophen were infused in randomized order. By means of the detection probe, concentration-time profiles of the drug in the brain were measured at interprobe distances between 1 and 2 mm. 3. Drug concentrations were found to be dependent on the drug as well as on the interprobe distance. It was found that the outflow concentration from the detection probe decreased with increasing lateral spacing between the probes and this decay was much steeper for acetaminophen than for atenolol. A model was developed which allows estimation of kbp/Deff (transfer coefficient from brain to blood/effective diffusion coefficient in brain extracellular fluid), which was considerably larger for the more lipohilic drug, acetaminophen. In addition, in vivo recovery values for both drugs were determined. 4. The results show that intracerebral microdialysis is able to detect local differences in drug concentrations following infusion into the brain. Furthermore, the potential use of intracerebral microdialysis to obtain pharmacokinetic parameters of drug distribution in brain by means of monitoring local concentrations of drugs in time is demonstrated.

Full text

PDF
2538

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banks W. A., Kastin A. J. Interactions between the blood-brain barrier and endogenous peptides: emerging clinical implications. Am J Med Sci. 1988 May;295(5):459–465. doi: 10.1097/00000441-198805000-00008. [DOI] [PubMed] [Google Scholar]
  2. Benveniste H., Drejer J., Schousboe A., Diemer N. H. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem. 1984 Nov;43(5):1369–1374. doi: 10.1111/j.1471-4159.1984.tb05396.x. [DOI] [PubMed] [Google Scholar]
  3. Benveniste H., Drejer J., Schousboe A., Diemer N. H. Regional cerebral glucose phosphorylation and blood flow after insertion of a microdialysis fiber through the dorsal hippocampus in the rat. J Neurochem. 1987 Sep;49(3):729–734. doi: 10.1111/j.1471-4159.1987.tb00954.x. [DOI] [PubMed] [Google Scholar]
  4. Benveniste H., Hansen A. J., Ottosen N. S. Determination of brain interstitial concentrations by microdialysis. J Neurochem. 1989 Jun;52(6):1741–1750. doi: 10.1111/j.1471-4159.1989.tb07252.x. [DOI] [PubMed] [Google Scholar]
  5. Blasberg R. G., Patlak C., Fenstermacher J. D. Intrathecal chemotherapy: brain tissue profiles after ventriculocisternal perfusion. J Pharmacol Exp Ther. 1975 Oct;195(1):73–83. [PubMed] [Google Scholar]
  6. Bodor N., Brewster M. E. Problems of delivery of drugs to the brain. Pharmacol Ther. 1982;19(3):337–386. doi: 10.1016/0163-7258(82)90073-0. [DOI] [PubMed] [Google Scholar]
  7. Bungay P. M., Morrison P. F., Dedrick R. L. Steady-state theory for quantitative microdialysis of solutes and water in vivo and in vitro. Life Sci. 1990;46(2):105–119. doi: 10.1016/0024-3205(90)90043-q. [DOI] [PubMed] [Google Scholar]
  8. Di Chiara G. In-vivo brain dialysis of neurotransmitters. Trends Pharmacol Sci. 1990 Mar;11(3):116–121. doi: 10.1016/0165-6147(90)90197-g. [DOI] [PubMed] [Google Scholar]
  9. Dykstra K. H., Hsiao J. K., Morrison P. F., Bungay P. M., Mefford I. N., Scully M. M., Dedrick R. L. Quantitative examination of tissue concentration profiles associated with microdialysis. J Neurochem. 1992 Mar;58(3):931–940. doi: 10.1111/j.1471-4159.1992.tb09346.x. [DOI] [PubMed] [Google Scholar]
  10. Fenstermacher J. D., Blasberg R. G., Patlak C. S. Methods for Quantifying the transport of drugs across brain barrier systems. Pharmacol Ther. 1981;14(2):217–248. doi: 10.1016/0163-7258(81)90062-0. [DOI] [PubMed] [Google Scholar]
  11. Fenstermacher J. D., Patlak C. S., Blasberg R. G. Transport of material between brain extracellular fluid, brain cells and blood. Fed Proc. 1974 Sep;33(9):2070–2074. [PubMed] [Google Scholar]
  12. Levin V. A. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 1980 Jun;23(6):682–684. doi: 10.1021/jm00180a022. [DOI] [PubMed] [Google Scholar]
  13. Pardridge W. M. Recent advances in blood-brain barrier transport. Annu Rev Pharmacol Toxicol. 1988;28:25–39. doi: 10.1146/annurev.pa.28.040188.000325. [DOI] [PubMed] [Google Scholar]
  14. Patlak C. S., Fenstermacher J. D. Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am J Physiol. 1975 Oct;229(4):877–884. doi: 10.1152/ajplegacy.1975.229.4.877. [DOI] [PubMed] [Google Scholar]
  15. Pollay M., Kaplan R. J. Diffusion of non-electrolytes in brain tissue. Brain Res. 1970 Feb 3;17(3):407–416. doi: 10.1016/0006-8993(70)90249-0. [DOI] [PubMed] [Google Scholar]
  16. Quan N., Blatteis C. M. Microdialysis: a system for localized drug delivery into the brain. Brain Res Bull. 1989 Apr;22(4):621–625. doi: 10.1016/0361-9230(89)90080-4. [DOI] [PubMed] [Google Scholar]
  17. Rapoport S. I., Ohno K., Pettigrew K. D. Drug entry into the brain. Brain Res. 1979 Aug 24;172(2):354–359. doi: 10.1016/0006-8993(79)90546-8. [DOI] [PubMed] [Google Scholar]
  18. Sendelbeck S. L., Urquhart J. Spatial distribution of dopamine, methotrexate and antipyrine during continuous intracerebral microperfusion. Brain Res. 1985 Mar 4;328(2):251–258. doi: 10.1016/0006-8993(85)91036-4. [DOI] [PubMed] [Google Scholar]
  19. Tossman U., Ungerstedt U. Microdialysis in the study of extracellular levels of amino acids in the rat brain. Acta Physiol Scand. 1986 Sep;128(1):9–14. doi: 10.1111/j.1748-1716.1986.tb07943.x. [DOI] [PubMed] [Google Scholar]
  20. Trnovec T., Kállay Z., Bezek S. Effects of ionizing radiation on the blood brain barrier permeability to pharmacologically active substances. Int J Radiat Oncol Biol Phys. 1990 Dec;19(6):1581–1587. doi: 10.1016/0360-3016(90)90376-u. [DOI] [PubMed] [Google Scholar]
  21. de Lange E. C., Danhof M., de Boer A. G., Breimer D. D. Critical factors of intracerebral microdialysis as a technique to determine the pharmacokinetics of drugs in rat brain. Brain Res. 1994 Dec 12;666(1):1–8. doi: 10.1016/0006-8993(94)90276-3. [DOI] [PubMed] [Google Scholar]
  22. de Lange E. C., Hesselink M. B., Danhof M., de Boer A. G., Breimer D. D. The use of intracerebral microdialysis to determine changes in blood-brain barrier transport characteristics. Pharm Res. 1995 Jan;12(1):129–133. doi: 10.1023/a:1016207208406. [DOI] [PubMed] [Google Scholar]
  23. van Bree J. B., Baljet A. V., van Geyt A., de Boer A. G., Danhof M., Breimer D. D. The unit impulse response procedure for the pharmacokinetic evaluation of drug entry into the central nervous system. J Pharmacokinet Biopharm. 1989 Aug;17(4):441–462. doi: 10.1007/BF01061457. [DOI] [PubMed] [Google Scholar]
  24. van Bree J. B., de Boer A. G., Danhof M., Ginsel L. A., Breimer D. D. Characterization of an "in vitro" blood-brain barrier: effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J Pharmacol Exp Ther. 1988 Dec;247(3):1233–1239. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES