Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Sep;116(2):1737–1744. doi: 10.1111/j.1476-5381.1995.tb16656.x

RS-45041-190: a selective, high-affinity ligand for I2 imidazoline receptors.

C M Brown 1, A C MacKinnon 1, W S Redfern 1, A Williams 1, C Linton 1, M Stewart 1, R U Clague 1, R Clark 1, M Spedding 1
PMCID: PMC1909080  PMID: 8528553

Abstract

1. RS-45041-190 (4-chloro-2-(imidazolin-2-yl)isoindoline) showed high affinity for I2 imidazoline receptors labelled by [3H]-idazoxan in rat (pKi = 8.66 +/- 0.09), rabbit (pKi = 9.37 +/- 0.07), dog (pKi = 9.32 +/- 0.18) and baboon kidney (pKi = 8.85 +/- 0.12), but had very low affinity for alpha 2-adrenoceptors in rat cerebral cortex (pKi = 5.7 +/- 0.09). 2. RS-45041-190 showed low affinity for other adrenoceptors, dopamine, 5-hydroxytryptamine, and muscarinic receptors and dihydropyridine binding sites (selectivity ratio > 1000). 3. RS-45041-190 showed moderate potency for the inhibition of monoamine oxidase A in vitro (pIC50 = 6.12), but had much lower potency for monoamine oxidase B (pIC50 = 4.47), neither of which equated with its affinity for I2 receptors. 4. RS-45041-190 (0.001 to 3 mg kg-1, i.v. and 1 ng-50 micrograms i.c.v.) had only small, transient effects on blood pressure and heart rate in anaesthetized rats. In conscious rats, RS-45041-190 had no effect on body core temperature or tail skin temperature (1 mg kg-1, s.c.) or on activity or rotarod performance (10 mg kg-1, i.p.). There were also no effects on barbiturate sleeping time in mice after doses of 1-10 mg kg-1, i.p. 5. RS-45041-190 (10 and 25 mg kg-1, i.p.) significantly increased food consumption in rats for up to 4 h after dosing, but unlike idazoxan (10 mg kg-1, i.p.) did not increase water consumption.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1737

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bidet M., Poujeol P., Parini A. Effect of imidazolines on Na+ transport and intracellular pH in renal proximal tubule cells. Biochim Biophys Acta. 1990 May 9;1024(1):173–178. doi: 10.1016/0005-2736(90)90221-9. [DOI] [PubMed] [Google Scholar]
  2. Brown C. M., MacKinnon A. C., Redfern W. S., Hicks P. E., Kilpatrick A. T., Small C., Ramcharan M., Clague R. U., Clark R. D., MacFarlane C. B. The pharmacology of RS-15385-197, a potent and selective alpha 2-adrenoceptor antagonist. Br J Pharmacol. 1993 Feb;108(2):516–525. doi: 10.1111/j.1476-5381.1993.tb12834.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  4. Clark R. D., Berger J., Garg P., Weinhardt K. K., Spedding M., Kilpatrick A. T., Brown C. M., MacKinnon A. C. Affinity of 2-(tetrahydroisoquinolin-2-ylmethyl)- and 2-(isoindolin-2-ylmethyl)imidazolines for alpha-adrenoceptors. Differential affinity of imidazolines for the [3H]idazoxan-labeled alpha 2-adrenoceptor vs the [3H]yohimbine-labeled site. J Med Chem. 1990 Feb;33(2):596–600. doi: 10.1021/jm00164a021. [DOI] [PubMed] [Google Scholar]
  5. Doetsch G. S., Erickson R. P. Synaptic processing of taste-quality information in the nucleus tractus solitarius of the rate. J Neurophysiol. 1970 Jul;33(4):490–507. doi: 10.1152/jn.1970.33.4.490. [DOI] [PubMed] [Google Scholar]
  6. Ernsberger P., Giuliano R., Willette R. N., Reis D. J. Role of imidazole receptors in the vasodepressor response to clonidine analogs in the rostral ventrolateral medulla. J Pharmacol Exp Ther. 1990 Apr;253(1):408–418. [PubMed] [Google Scholar]
  7. Gross P. M. Circumventricular organ capillaries. Prog Brain Res. 1992;91:219–233. [PubMed] [Google Scholar]
  8. Göthert M., Molderings G. J. Involvement of presynaptic imidazoline receptors in the alpha 2-adrenoceptor-independent inhibition of noradrenaline release by imidazoline derivatives. Naunyn Schmiedebergs Arch Pharmacol. 1991 Mar;343(3):271–282. doi: 10.1007/BF00251126. [DOI] [PubMed] [Google Scholar]
  9. Hollister L. E., Claghorn J. L. New antidepressants. Annu Rev Pharmacol Toxicol. 1993;33:165–177. doi: 10.1146/annurev.pa.33.040193.001121. [DOI] [PubMed] [Google Scholar]
  10. Jackson H. C., Griffin I. J., Nutt D. J. The effects of idazoxan and other alpha 2-adrenoceptor antagonists on food and water intake in the rat. Br J Pharmacol. 1991 Sep;104(1):258–262. doi: 10.1111/j.1476-5381.1991.tb12416.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krulich L., Jurcovicová J., Le T. Prolactin (PRL) release-inhibiting properties of the alpha 2 adrenergic receptor antagonist idazoxan: comparison with yohimbine. Life Sci. 1989;44(12):809–818. doi: 10.1016/0024-3205(89)90378-0. [DOI] [PubMed] [Google Scholar]
  12. Leibowitz S. F. Neurochemical-neuroendocrine systems in the brain controlling macronutrient intake and metabolism. Trends Neurosci. 1992 Dec;15(12):491–497. doi: 10.1016/0166-2236(92)90101-d. [DOI] [PubMed] [Google Scholar]
  13. Li X. M., Juorio A. V., Paterson I. A., Boulton A. A. Absence of 2-phenylethylamine binding after monoamine oxidase inhibition in rat brain. Eur J Pharmacol. 1992 Jan 14;210(2):189–193. doi: 10.1016/0014-2999(92)90670-y. [DOI] [PubMed] [Google Scholar]
  14. Luiten P. G., ter Horst G. J., Steffens A. B. The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism. Prog Neurobiol. 1987;28(1):1–54. doi: 10.1016/0301-0082(87)90004-9. [DOI] [PubMed] [Google Scholar]
  15. MacKinnon A. C., Redfern W. S., Brown C. M. [3H]-RS-45041-190: a selective high-affinity radioligand for I2 imidazoline receptors. Br J Pharmacol. 1995 Sep;116(2):1729–1736. doi: 10.1111/j.1476-5381.1995.tb16655.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MacKinnon A. C., Stewart M., Olverman H. J., Spedding M., Brown C. M. [3H]p-aminoclonidine and [3H]idazoxan label different populations of imidazoline sites on rat kidney. Eur J Pharmacol. 1993 Feb 23;232(1):79–87. doi: 10.1016/0014-2999(93)90731-v. [DOI] [PubMed] [Google Scholar]
  17. Maiese K., Pek L., Berger S. B., Reis D. J. Reduction in focal cerebral ischemia by agents acting at imidazole receptors. J Cereb Blood Flow Metab. 1992 Jan;12(1):53–63. doi: 10.1038/jcbfm.1992.7. [DOI] [PubMed] [Google Scholar]
  18. Olmos G., Gabilondo A. M., Miralles A., Escriba P. V., García-Sevilla J. A. Chronic treatment with the monoamine oxidase inhibitors clorgyline and pargyline down-regulates non-adrenoceptor [3H]-idazoxan binding sites in the rat brain. Br J Pharmacol. 1993 Mar;108(3):597–603. doi: 10.1111/j.1476-5381.1993.tb12848.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Phillips M. I. Functions of angiotensin in the central nervous system. Annu Rev Physiol. 1987;49:413–435. doi: 10.1146/annurev.ph.49.030187.002213. [DOI] [PubMed] [Google Scholar]
  20. Ramagopal M. V., Leighton H. J. Analysis of the presence of postjunctional alpha-2 adrenoceptors in the rat anococcygeus muscle. J Pharmacol Exp Ther. 1989 Aug;250(2):492–499. [PubMed] [Google Scholar]
  21. Redfern W. S., MacLean M. R., Clague R. U., McGrath J. C. The role of alpha 2-adrenoceptors in the vasculature of the rat tail. Br J Pharmacol. 1995 Apr;114(8):1724–1730. doi: 10.1111/j.1476-5381.1995.tb14963.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reis D. J., Regunathan S., Wang H., Feinstein D. L., Meeley M. P. Imidazoline receptors in the nervous system. Fundam Clin Pharmacol. 1992;6 (Suppl 1):23S–29S. doi: 10.1111/j.1472-8206.1992.tb00138.x. [DOI] [PubMed] [Google Scholar]
  23. Ruiz J., Martín I., Callado L. F., Meana J. J., Barturen F., García-Sevilla J. A. Non-adrenoceptor [3H]idazoxan binding sites (I2-imidazoline sites) are increased in postmortem brain from patients with Alzheimer's disease. Neurosci Lett. 1993 Sep 17;160(1):109–112. doi: 10.1016/0304-3940(93)90925-b. [DOI] [PubMed] [Google Scholar]
  24. Saura J., Kettler R., Da Prada M., Richards J. G. Quantitative enzyme radioautography with 3H-Ro 41-1049 and 3H-Ro 19-6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci. 1992 May;12(5):1977–1999. doi: 10.1523/JNEUROSCI.12-05-01977.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sharp F. R., Sagar S. M., Swanson R. A. Metabolic mapping with cellular resolution: c-fos vs. 2-deoxyglucose. Crit Rev Neurobiol. 1993;7(3-4):205–228. [PubMed] [Google Scholar]
  26. Sim L. J., Joseph S. A. Arcuate nucleus projections to brainstem regions which modulate nociception. J Chem Neuroanat. 1991 Mar-Apr;4(2):97–109. doi: 10.1016/0891-0618(91)90034-a. [DOI] [PubMed] [Google Scholar]
  27. Stillings M. R., Chapleo C. B., Butler R. C., Davis J. A., England C. D., Myers M., Myers P. L., Tweddle N., Welbourn A. P., Doxey J. C. Alpha-adrenoreceptor reagents. 3. Synthesis of some 2-substituted 1,4-benzodioxans as selective presynaptic alpha 2-adrenoreceptor antagonists. J Med Chem. 1985 Aug;28(8):1054–1062. doi: 10.1021/jm00146a013. [DOI] [PubMed] [Google Scholar]
  28. Tesson F., Prip-Buus C., Lemoine A., Pegorier J. P., Parini A. Subcellular distribution of imidazoline-guanidinium-receptive sites in human and rabbit liver. Major localization to the mitochondrial outer membrane. J Biol Chem. 1991 Jan 5;266(1):155–160. [PubMed] [Google Scholar]
  29. Zonnenchein R., Diamant S., Atlas D. Imidazoline receptors in rat liver cells: a novel receptor or a subtype of alpha 2-adrenoceptors? Eur J Pharmacol. 1990 Nov 6;190(1-2):203–215. doi: 10.1016/0014-2999(90)94127-j. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES