Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Sep;116(2):1829–1834. doi: 10.1111/j.1476-5381.1995.tb16670.x

Inhibition of angiogenesis, tumour growth and metastasis by the NO-releasing vasodilators, isosorbide mononitrate and dinitrate.

E Pipili-Synetos 1, A Papageorgiou 1, E Sakkoula 1, G Sotiropoulou 1, T Fotsis 1, G Karakiulakis 1, M E Maragoudakis 1
PMCID: PMC1909086  PMID: 8528567

Abstract

1. The effect of the nitric oxide (NO)-producing nitrovasodilators isosorbide mononitrate (ISMN) and isosorbide dinitrate (ISDN) were assessed on (a) the in vivo model of angiogenesis of the chick chorioallantoic membrane (CAM) and (b) on the growth and metastatic properties of the Lewis Lung carcinoma (LLC) in mice. 2. Isosorbide 5-mononitrate (ISMN) and isosorbide dinitrate (ISDN), inhibited angiogenesis in the CAM dose-dependently. ISMN was more potent in inhibiting this process. Both compounds were capable of completely reversing the angiogenic effect of alpha-thrombin. These effects of ISMN and ISDN on angiogenesis were comparable to those previously observed with sodium nitroprusside which generates NO non-enzymatically. 3. Mice, implanted intramuscularly with LLC, received daily i.p. injections of ISMN for 14 days resulting in a significant decrease in the size of the primary tumour and a reduction in the number and size of metastatic foci in the lungs. ISDN had a similar but less pronounced effect than that observed with ISMN. 4. Addition of ISMN or ISDN to cultures of bovine, rabbit and human endothelial cells and to cultures of LLC cells had no effect on their growth characteristics. 5. These results indicate that ISMN and ISDN inhibit angiogenesis and tumor growth and metastasis in an animal tumour model. The possibility should therefore be considered that these nitrovasodilators which are widely used therapeutically and have well characterized pharmacological profiles, may also possess antitumour properties in the clinic.

Full text

PDF
1829

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams J. Nitrate tolerance and dependence. Am Heart J. 1980 Jan;99(1):113–123. doi: 10.1016/0002-8703(80)90321-x. [DOI] [PubMed] [Google Scholar]
  2. Bredt D. S., Snyder S. H. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–195. doi: 10.1146/annurev.bi.63.070194.001135. [DOI] [PubMed] [Google Scholar]
  3. Brooks P. C., Clark R. A., Cheresh D. A. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994 Apr 22;264(5158):569–571. doi: 10.1126/science.7512751. [DOI] [PubMed] [Google Scholar]
  4. Deliconstantinos G., Villiotou V., Stravrides J. C. Release by ultraviolet B (u.v.B) radiation of nitric oxide (NO) from human keratinocytes: a potential role for nitric oxide in erythema production. Br J Pharmacol. 1995 Mar;114(6):1257–1265. doi: 10.1111/j.1476-5381.1995.tb13341.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feelisch M., Noack E. A. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol. 1987 Jul 2;139(1):19–30. doi: 10.1016/0014-2999(87)90493-6. [DOI] [PubMed] [Google Scholar]
  6. Fenton J. W., 2nd, Ofosu F. A., Moon D. G., Maraganore J. M. Thrombin structure and function: why thrombin is the primary target for antithrombotics. Blood Coagul Fibrinolysis. 1991 Feb;2(1):69–75. [PubMed] [Google Scholar]
  7. Folkman J., Shing Y. Angiogenesis. J Biol Chem. 1992 Jun 5;267(16):10931–10934. [PubMed] [Google Scholar]
  8. Folkman J. Tumor angiogenesis. Adv Cancer Res. 1985;43:175–203. doi: 10.1016/s0065-230x(08)60946-x. [DOI] [PubMed] [Google Scholar]
  9. Gasic G. J., Gasic T. B., Galanti N., Johnson T., Murphy S. Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. Int J Cancer. 1973 May;11(3):704–718. doi: 10.1002/ijc.2910110322. [DOI] [PubMed] [Google Scholar]
  10. Gasic G. J., Gasic T. B., Stewart C. C. Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A. 1968 Sep;61(1):46–52. doi: 10.1073/pnas.61.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gospodarowicz D., Massoglia S., Cheng J., Fujii D. K. Effect of fibroblast growth factor and lipoproteins on the proliferation of endothelial cells derived from bovine adrenal cortex, brain cortex, and corpus luteum capillaries. J Cell Physiol. 1986 Apr;127(1):121–136. doi: 10.1002/jcp.1041270116. [DOI] [PubMed] [Google Scholar]
  12. Gross S. S., Wolin M. S. Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol. 1995;57:737–769. doi: 10.1146/annurev.ph.57.030195.003513. [DOI] [PubMed] [Google Scholar]
  13. Harris-Hooker S. A., Gajdusek C. M., Wight T. N., Schwartz S. M. Neovascular responses induced by cultured aortic endothelial cells. J Cell Physiol. 1983 Mar;114(3):302–310. doi: 10.1002/jcp.1041140308. [DOI] [PubMed] [Google Scholar]
  14. Harrison D. G., Bates J. N. The nitrovasodilators. New ideas about old drugs. Circulation. 1993 May;87(5):1461–1467. doi: 10.1161/01.cir.87.5.1461. [DOI] [PubMed] [Google Scholar]
  15. Honn K. V., Cicone B., Skoff A. Prostacyclin: a potent antimetastatic agent. Science. 1981 Jun 12;212(4500):1270–1272. doi: 10.1126/science.7015512. [DOI] [PubMed] [Google Scholar]
  16. Honn K. V., Tang D. G., Chen Y. Q. Platelets and cancer metastasis: more than an epiphenomenon. Semin Thromb Hemost. 1992;18(4):392–415. doi: 10.1055/s-2007-1002578. [DOI] [PubMed] [Google Scholar]
  17. Ignarro L. J., Lippton H., Edwards J. C., Baricos W. H., Hyman A. L., Kadowitz P. J., Gruetter C. A. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther. 1981 Sep;218(3):739–749. [PubMed] [Google Scholar]
  18. Karpatkin S., Pearlstein E., Ambrogio C., Coller B. S. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest. 1988 Apr;81(4):1012–1019. doi: 10.1172/JCI113411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Knighton D. R., Hunt T. K., Thakral K. K., Goodson W. H., 3rd Role of platelets and fibrin in the healing sequence: an in vivo study of angiogenesis and collagen synthesis. Ann Surg. 1982 Oct;196(4):379–388. doi: 10.1097/00000658-198210000-00001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maione T. E., Sharpe R. J. Development of angiogenesis inhibitors for clinical applications. Trends Pharmacol Sci. 1990 Nov;11(11):457–461. doi: 10.1016/0165-6147(90)90127-t. [DOI] [PubMed] [Google Scholar]
  21. Maragoudakis M. E., Panoutsacopoulou M., Sarmonika M. Rate of basement membrane biosynthesis as an index to angiogenesis. Tissue Cell. 1988;20(4):531–539. doi: 10.1016/0040-8166(88)90055-9. [DOI] [PubMed] [Google Scholar]
  22. Nierodzik M. L., Kajumo F., Karpatkin S. Effect of thrombin treatment of tumor cells on adhesion of tumor cells to platelets in vitro and tumor metastasis in vivo. Cancer Res. 1992 Jun 15;52(12):3267–3272. [PubMed] [Google Scholar]
  23. Nierodzik M. L., Plotkin A., Kajumo F., Karpatkin S. Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. J Clin Invest. 1991 Jan;87(1):229–236. doi: 10.1172/JCI114976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Page C. P. The involvement of platelets in non-thrombotic processes. Trends Pharmacol Sci. 1988 Feb;9(2):66–71. doi: 10.1016/0165-6147(88)90120-4. [DOI] [PubMed] [Google Scholar]
  25. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  26. Pipili-Synetos E., Sakkoula E., Haralabopoulos G., Andriopoulou P., Peristeris P., Maragoudakis M. E. Evidence that nitric oxide is an endogenous antiangiogenic mediator. Br J Pharmacol. 1994 Mar;111(3):894–902. doi: 10.1111/j.1476-5381.1994.tb14822.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rickles F. R., Edwards R. L. Activation of blood coagulation in cancer: Trousseau's syndrome revisited. Blood. 1983 Jul;62(1):14–31. [PubMed] [Google Scholar]
  28. Tsopanoglou N. E., Pipili-Synetos E., Maragoudakis M. E. Thrombin promotes angiogenesis by a mechanism independent of fibrin formation. Am J Physiol. 1993 May;264(5 Pt 1):C1302–C1307. doi: 10.1152/ajpcell.1993.264.5.C1302. [DOI] [PubMed] [Google Scholar]
  29. Yamamoto T., Terada N., Nishizawa Y., Tanaka H., Akedo H., Seiyama A., Shiga T., Kosaka H. Effects of NG-nitro-L-arginine and/or L-arginine on experimental pulmonary metastasis in mice. Cancer Lett. 1994 Nov 25;87(1):115–120. doi: 10.1016/0304-3835(94)90417-0. [DOI] [PubMed] [Google Scholar]
  30. Yang W., Ando J., Korenaga R., Toyo-oka T., Kamiya A. Exogenous nitric oxide inhibits proliferation of cultured vascular endothelial cells. Biochem Biophys Res Commun. 1994 Sep 15;203(2):1160–1167. doi: 10.1006/bbrc.1994.2304. [DOI] [PubMed] [Google Scholar]
  31. Ziche M., Morbidelli L., Masini E., Amerini S., Granger H. J., Maggi C. A., Geppetti P., Ledda F. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest. 1994 Nov;94(5):2036–2044. doi: 10.1172/JCI117557. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES