Abstract
1. Two-electrode voltage clamp was used to study the effects of adenosine 3':5'-cyclic monophosphate (cyclic AMP) and guanosine 3':5'-cyclic monophosphate (cyclic GMP) on voltage-dependent ion channels in salivary gland cells of the leech, Haementeria ghilianii. 2. Intracellular cyclic AMP specifically blocked delayed rectifier K+ channels. This was shown by use of 3-isobutyl-1-methylxanthine (IBMX, a phosphodiesterase inhibitor), forskolin (an activator of adenylyl cyclase) and intracellular injection of cyclic AMP and its dibutyryl and 8-bromo analogues. Cyclic AMP appeared to be the second messenger for the putative neuroglandular transmitter, 5-hydroxytryptamine. 3. Intracellular injection of cyclic GMP specifically potentiated high-voltage-activated (HVA) Ca2+ current and the effect was mimicked by zaprinast, an inhibitor of cyclic GMP-dependent phosphodiesterase. 4. Extracellularly, cyclic GMP and cyclic AMP specifically decreased the amplitude and increased the rate of inactivation of HVA Ca2+ current. These effects of the cyclic nucleotides are identical to those known for extracellular ATP, which activates a presumed purinoceptor. The pyrimidine nucleotide, UTP, was almost equipotent to ATP (threshold dose < 10(-6) M), indicative of a vertebrate-type nucleotide receptor. However, suramin (5 x 10(-5) M), a non-specific P2-receptor antagonist, failed to block the effects of 5 x 10(-6) M ATP (higher suramin doses could not be reliably tested because of the depolarization and increase in membrane conductance produced by the drug). 5. Activation of the putative purinoceptor by ATP did not affect inward rectifier Na+/K+ current which is known to be potentiated by intracellular cyclic AMP and reduced by intracellular cyclic GMP. 6. The preparation may provide a useful model for study of nucleotide actions, and interactions, in channel modulation. It has technical advantages such as large cells (1200 microns in diameter) which lack intercellular coupling and may be individually dissected for biochemical studies.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey S. J., Hourani S. M. Differential effects of suramin on P2-purinoceptors mediating contraction of the guinea-pig vas deferens and urinary bladder. Br J Pharmacol. 1994 May;112(1):219–225. doi: 10.1111/j.1476-5381.1994.tb13055.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnstock G. Overview. Purinergic mechanisms. Ann N Y Acad Sci. 1990;603:1–18. doi: 10.1111/j.1749-6632.1990.tb37657.x. [DOI] [PubMed] [Google Scholar]
- Catterall W. A., Striessnig J. Receptor sites for Ca2+ channel antagonists. Trends Pharmacol Sci. 1992 Jun;13(6):256–262. doi: 10.1016/0165-6147(92)90079-l. [DOI] [PubMed] [Google Scholar]
- Davidson J. S., Wakefield I. K., Sohnius U., van der Merwe P. A., Millar R. P. A novel extracellular nucleotide receptor coupled to phosphoinositidase-C in pituitary cells. Endocrinology. 1990 Jan;126(1):80–87. doi: 10.1210/endo-126-1-80. [DOI] [PubMed] [Google Scholar]
- Diverse-Pierluissi M., Dunlap K., Westhead E. W. Multiple actions of extracellular ATP on calcium currents in cultured bovine chromaffin cells. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1261–1265. doi: 10.1073/pnas.88.4.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolphin A. C., Forda S. R., Scott R. H. Calcium-dependent currents in cultured rat dorsal root ganglion neurones are inhibited by an adenosine analogue. J Physiol. 1986 Apr;373:47–61. doi: 10.1113/jphysiol.1986.sp016034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubyak G. R., el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993 Sep;265(3 Pt 1):C577–C606. doi: 10.1152/ajpcell.1993.265.3.C577. [DOI] [PubMed] [Google Scholar]
- Eisenberg R. S., Engel E. The spatial variation of membrane potential near a small source of current in a spherical cell. J Gen Physiol. 1970 Jun;55(6):736–757. doi: 10.1085/jgp.55.6.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gandía L., García A. G., Morad M. ATP modulation of calcium channels in chromaffin cells. J Physiol. 1993 Oct;470:55–72. doi: 10.1113/jphysiol.1993.sp019847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goy M. F. cGMP: the wayward child of the cyclic nucleotide family. Trends Neurosci. 1991 Jul;14(7):293–299. doi: 10.1016/0166-2236(91)90140-p. [DOI] [PubMed] [Google Scholar]
- Henning R. H., Duin M., den Hertog A., Nelemans A. Characterization of P2-purinoceptor mediated cyclic AMP formation in mouse C2C12 myotubes. Br J Pharmacol. 1993 Sep;110(1):133–138. doi: 10.1111/j.1476-5381.1993.tb13782.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leff P., Wood B. E., O'Connor S. E. Suramin is a slowly-equilibrating but competitive antagonist at P2x-receptors in the rabbit isolated ear artery. Br J Pharmacol. 1990 Nov;101(3):645–649. doi: 10.1111/j.1476-5381.1990.tb14134.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall C. G., Lent C. M. Excitability and secretory activity in the salivary gland cells of jawed leeches (Hirudinea: Gnathobdellida). J Exp Biol. 1988 Jul;137:89–105. doi: 10.1242/jeb.137.1.89. [DOI] [PubMed] [Google Scholar]
- Qu Y., Campbell D. L., Strauss H. C. Modulation of L-type Ca2+ current by extracellular ATP in ferret isolated right ventricular myocytes. J Physiol. 1993 Nov;471:295–317. doi: 10.1113/jphysiol.1993.sp019902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saïag B., Milon D., Allaín H., Rault B., Van den Driessche J. Constriction of the smooth muscle of rat tail and femoral arteries and dog saphenous vein is induced by uridine triphosphate via 'pyrimidinoceptors', and by adenosine triphosphate via P2x purinoceptors. Blood Vessels. 1990;27(6):352–364. doi: 10.1159/000158829. [DOI] [PubMed] [Google Scholar]
- Seifert R., Schultz G. Involvement of pyrimidinoceptors in the regulation of cell functions by uridine and by uracil nucleotides. Trends Pharmacol Sci. 1989 Sep;10(9):365–369. doi: 10.1016/0165-6147(89)90009-6. [DOI] [PubMed] [Google Scholar]
- Sorbera L. A., Morad M. Modulation of cardiac sodium channels by cAMP receptors on the myocyte surface. Science. 1991 Sep 13;253(5025):1286–1289. doi: 10.1126/science.1653970. [DOI] [PubMed] [Google Scholar]
- Swandulla D., Carbone E., Lux H. D. Do calcium channel classifications account for neuronal calcium channel diversity? Trends Neurosci. 1991 Feb;14(2):46–51. doi: 10.1016/0166-2236(91)90018-p. [DOI] [PubMed] [Google Scholar]
- Trezise D. J., Bell N. J., Kennedy I., Humphrey P. P. Effects of divalent cations on the potency of ATP and related agonists in the rat isolated vagus nerve: implications for P2 purinoceptor classification. Br J Pharmacol. 1994 Oct;113(2):463–470. doi: 10.1111/j.1476-5381.1994.tb17012.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uneyama H., Uneyama C., Ebihara S., Akaike N. Suramin and reactive blue 2 are antagonists for a newly identified purinoceptor on rat megakaryocyte. Br J Pharmacol. 1994 Jan;111(1):245–249. doi: 10.1111/j.1476-5381.1994.tb14051.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walz B., Schäffner K. H., Sawyer R. T. Ultrastructure of the anterior salivary gland cells of the giant leech, Haementeria ghilianii (Annelida, Hirudinea). J Morphol. 1988 Jun;196(3):321–332. doi: 10.1002/jmor.1051960305. [DOI] [PubMed] [Google Scholar]
- Wuttke W. A., Berry M. S. Extracellular ATP selectively modulates a high-voltage-activated calcium conductance in salivary gland cells of the leech Haementeria ghilianii. J Exp Biol. 1993 Aug;181:313–319. doi: 10.1242/jeb.181.1.313. [DOI] [PubMed] [Google Scholar]
- Wuttke W. A., Berry M. S. Modulation of inwardly rectifying Na(+)-K+ channels by serotonin and cyclic nucleotides in salivary gland cells of the leech, Haementeria. J Membr Biol. 1992 Apr;127(1):57–68. doi: 10.1007/BF00232758. [DOI] [PubMed] [Google Scholar]
- Wuttke W. A., Berry M. S. Rapid co-transport of sodium and chloride ions in giant salivary gland cells of the leech Haementeria ghilianii. J Physiol. 1990 Aug;427:51–69. doi: 10.1113/jphysiol.1990.sp018160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Kügelgen I., Bültmann R., Starke K. Interaction of adenine nucleotides, UTP and suramin in mouse vas deferens: suramin-sensitive and suramin-insensitive components in the contractile effect of ATP. Naunyn Schmiedebergs Arch Pharmacol. 1990 Aug;342(2):198–205. doi: 10.1007/BF00166965. [DOI] [PubMed] [Google Scholar]
- von Kügelgen I., Häussinger D., Starke K. Evidence for a vasoconstriction-mediating receptor for UTP, distinct from the P2 purinoceptor, in rabbit ear artery. Naunyn Schmiedebergs Arch Pharmacol. 1987 Nov;336(5):556–560. doi: 10.1007/BF00169313. [DOI] [PubMed] [Google Scholar]