Abstract
1. The effects of propofol (2,6 di-isopropylphenol) on responses to the selective glutamate receptor agonists, N-methyl-D-aspartate (NMDA) and kainate, were investigated in cultured hippocampal neurones of the mouse. Whole cell and single channel currents were recorded by patch-clamp techniques. Drugs were applied with a multi-barrel perfusion system. 2. Propofol produced a reversible, dose-dependent inhibition of whole cell currents activated by NMDA. The concentration of propofol which induced 50% of the maximal inhibition (IC50) was approximately 160 microM. The maximal inhibition was incomplete leaving a residual current of about 33% of the control response. This inhibitory action of propofol was neither voltage- nor use-dependent. 3. Analysis of the dose-response relation for whole cell NMDA-activated currents indicated that propofol caused no significant change in the apparent affinity of the receptor for NMDA. 4. Outside-out patch recordings of single channel currents evoked by NMDA (10 microM) revealed that propofol (100 microM) reversibly decreased the probability of channel opening but did not influence the average duration of channel opening or single channel conductance. 5. Whole-cell currents evoked by kainate (50 microM) were insensitive to propofol (1 microM-1 mM). 6. These results indicate that propofol inhibits the NMDA subtype of glutamate receptor, possibly through an allosteric modulation of channel gating rather than by blocking the open channel. Depression of NMDA-mediated excitatory neurotransmission may contribute to the anaesthetic, amnesic and anti-convulsant properties of propofol.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams P. R. Drug blockade of open end-plate channels. J Physiol. 1976 Sep;260(3):531–552. doi: 10.1113/jphysiol.1976.sp011530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baum V. C. Distinctive effects of three intravenous anesthetics on the inward rectifier (IK1) and the delayed rectifier (IK) potassium currents in myocardium: implications for the mechanism of action. Anesth Analg. 1993 Jan;76(1):18–23. doi: 10.1213/00000539-199301000-00004. [DOI] [PubMed] [Google Scholar]
- Bianchi M., Battistin T., Galzigna L. 2,6-diisopropylphenol, a general anesthetic, inhibits glutamate action on rat synaptosomes. Neurochem Res. 1991 Apr;16(4):443–446. doi: 10.1007/BF00965564. [DOI] [PubMed] [Google Scholar]
- Borgeat A., Wilder-Smith O. H., Suter P. M. The nonhypnotic therapeutic applications of propofol. Anesthesiology. 1994 Mar;80(3):642–656. doi: 10.1097/00000542-199403000-00022. [DOI] [PubMed] [Google Scholar]
- Catterall W. A. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol. 1980;20:15–43. doi: 10.1146/annurev.pa.20.040180.000311. [DOI] [PubMed] [Google Scholar]
- Cockshott I. D. Propofol ('Diprivan') pharmacokinetics and metabolism--an overview. Postgrad Med J. 1985;61 (Suppl 3):45–50. [PubMed] [Google Scholar]
- Collins G. G. Effects of the anaesthetic 2,6-diisopropylphenol on synaptic transmission in the rat olfactory cortex slice. Br J Pharmacol. 1988 Nov;95(3):939–949. doi: 10.1111/j.1476-5381.1988.tb11724.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Covarrubias M., Steinbach J. H. Excision of membrane patches reduces the mean open time of nicotinic acetylcholine receptors. Pflugers Arch. 1990 Jun;416(4):385–392. doi: 10.1007/BF00370744. [DOI] [PubMed] [Google Scholar]
- Dilger J. P., Vidal A. M., Mody H. I., Liu Y. Evidence for direct actions of general anesthetics on an ion channel protein. A new look at a unified mechanism of action. Anesthesiology. 1994 Aug;81(2):431–442. doi: 10.1097/00000542-199408000-00022. [DOI] [PubMed] [Google Scholar]
- Frenkel C., Urban B. W. Human brain sodium channels as one of the molecular target sites for the new intravenous anaesthetic propofol (2,6-diisopropylphenol). Eur J Pharmacol. 1991 Sep 12;208(1):75–79. doi: 10.1016/0922-4106(91)90054-l. [DOI] [PubMed] [Google Scholar]
- Hales T. G., Lambert J. J. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br J Pharmacol. 1991 Nov;104(3):619–628. doi: 10.1111/j.1476-5381.1991.tb12479.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hara M., Kai Y., Ikemoto Y. Propofol activates GABAA receptor-chloride ionophore complex in dissociated hippocampal pyramidal neurons of the rat. Anesthesiology. 1993 Oct;79(4):781–788. doi: 10.1097/00000542-199310000-00021. [DOI] [PubMed] [Google Scholar]
- Huettner J. E., Bean B. P. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1307–1311. doi: 10.1073/pnas.85.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jahr C. E., Stevens C. F. Glutamate activates multiple single channel conductances in hippocampal neurons. Nature. 1987 Feb 5;325(6104):522–525. doi: 10.1038/325522a0. [DOI] [PubMed] [Google Scholar]
- James R., Glen J. B. Synthesis, biological evaluation, and preliminary structure-activity considerations of a series of alkylphenols as intravenous anesthetic agents. J Med Chem. 1980 Dec;23(12):1350–1357. doi: 10.1021/jm00186a013. [DOI] [PubMed] [Google Scholar]
- Kanto J. H. Propofol, the newest induction agent of anesthesia. Int J Clin Pharmacol Ther Toxicol. 1988 Jan;26(1):41–57. [PubMed] [Google Scholar]
- Lester R. A., Clements J. D., Westbrook G. L., Jahr C. E. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature. 1990 Aug 9;346(6284):565–567. doi: 10.1038/346565a0. [DOI] [PubMed] [Google Scholar]
- Lodge D., Anis N. A. Effects of ketamine and three other anaesthetics on spinal reflexes and inhibitions in the cat. Br J Anaesth. 1984 Oct;56(10):1143–1151. doi: 10.1093/bja/56.10.1143. [DOI] [PubMed] [Google Scholar]
- MacDonald J. F., Miljkovic Z., Pennefather P. Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine. J Neurophysiol. 1987 Aug;58(2):251–266. doi: 10.1152/jn.1987.58.2.251. [DOI] [PubMed] [Google Scholar]
- MacDonald J. F., Mody I., Salter M. W. Regulation of N-methyl-D-aspartate receptors revealed by intracellular dialysis of murine neurones in culture. J Physiol. 1989 Jul;414:17–34. doi: 10.1113/jphysiol.1989.sp017674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacDonald J. F., Nowak L. M. Mechanisms of blockade of excitatory amino acid receptor channels. Trends Pharmacol Sci. 1990 Apr;11(4):167–172. doi: 10.1016/0165-6147(90)90070-O. [DOI] [PubMed] [Google Scholar]
- Magnelli V., Nobile M., Maestrone E. K+ channels in PC12 cells are affected by propofol. Pflugers Arch. 1992 Mar;420(3-4):393–398. doi: 10.1007/BF00374475. [DOI] [PubMed] [Google Scholar]
- Neher E., Steinbach J. H. Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J Physiol. 1978 Apr;277:153–176. doi: 10.1113/jphysiol.1978.sp012267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oh Y., Benos D. J. Single-channel characteristics of a purified bovine renal amiloride-sensitive Na+ channel in planar lipid bilayers. Am J Physiol. 1993 Jun;264(6 Pt 1):C1489–C1499. doi: 10.1152/ajpcell.1993.264.6.C1489. [DOI] [PubMed] [Google Scholar]
- Olcese R., Usai C., Maestrone E., Nobile M. The general anesthetic propofol inhibits transmembrane calcium current in chick sensory neurons. Anesth Analg. 1994 May;78(5):955–960. doi: 10.1213/00000539-199405000-00021. [DOI] [PubMed] [Google Scholar]
- Orser B. A., Wang L. Y., Pennefather P. S., MacDonald J. F. Propofol modulates activation and desensitization of GABAA receptors in cultured murine hippocampal neurons. J Neurosci. 1994 Dec;14(12):7747–7760. doi: 10.1523/JNEUROSCI.14-12-07747.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oxorn D., Orser B., Ferris L. E., Harrington E. Propofol and thiopental anesthesia: a comparison of the incidence of dreams and perioperative mood alterations. Anesth Analg. 1994 Sep;79(3):553–557. doi: 10.1213/00000539-199409000-00026. [DOI] [PubMed] [Google Scholar]
- Pang R., Quartermain D., Rosman E., Turndorf H. Effect of propofol on memory in mice. Pharmacol Biochem Behav. 1993 Jan;44(1):145–151. doi: 10.1016/0091-3057(93)90292-2. [DOI] [PubMed] [Google Scholar]
- Polster M. R., Gray P. A., O'Sullivan G., McCarthy R. A., Park G. R. Comparison of the sedative and amnesic effects of midazolam and propofol. Br J Anaesth. 1993 Jun;70(6):612–616. doi: 10.1093/bja/70.6.612. [DOI] [PubMed] [Google Scholar]
- Shafer A., Doze V. A., Shafer S. L., White P. F. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology. 1988 Sep;69(3):348–356. doi: 10.1097/00000542-198809000-00011. [DOI] [PubMed] [Google Scholar]
- Skues M. A., Prys-Roberts C. The pharmacology of propofol. J Clin Anesth. 1989;1(5):387–400. doi: 10.1016/0952-8180(89)90080-9. [DOI] [PubMed] [Google Scholar]
- Suresh D. Nightmares and recovery from anesthesia. Anesth Analg. 1991 Mar;72(3):404–405. [PubMed] [Google Scholar]
- Tonner P. H., Poppers D. M., Miller K. W. The general anesthetic potency of propofol and its dependence on hydrostatic pressure. Anesthesiology. 1992 Nov;77(5):926–931. doi: 10.1097/00000542-199211000-00015. [DOI] [PubMed] [Google Scholar]
- Twyman R. E., Macdonald R. L. Neurosteroid regulation of GABAA receptor single-channel kinetic properties of mouse spinal cord neurons in culture. J Physiol. 1992 Oct;456:215–245. doi: 10.1113/jphysiol.1992.sp019334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veintemilla F., Elinder F., Arhem P. Mechanisms of propofol action on ion currents in the myelinated axon of Xenopus laevis. Eur J Pharmacol. 1992 Jul 21;218(1):59–68. doi: 10.1016/0014-2999(92)90147-v. [DOI] [PubMed] [Google Scholar]
- Wachtel R. E., Wegrzynowicz E. S. Kinetics of nicotinic acetylcholine ion channels in the presence of intravenous anaesthetics and induction agents. Br J Pharmacol. 1992 Jul;106(3):623–627. doi: 10.1111/j.1476-5381.1992.tb14385.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang L. Y., Dudek E. M., Browning M. D., MacDonald J. F. Modulation of AMPA/kainate receptors in cultured murine hippocampal neurones by protein kinase C. J Physiol. 1994 Mar 15;475(3):431–437. doi: 10.1113/jphysiol.1994.sp020083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang L. Y., Salter M. W., MacDonald J. F. Regulation of kainate receptors by cAMP-dependent protein kinase and phosphatases. Science. 1991 Sep 6;253(5024):1132–1135. doi: 10.1126/science.1653455. [DOI] [PubMed] [Google Scholar]
