Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Sep;116(2):1729–1736. doi: 10.1111/j.1476-5381.1995.tb16655.x

[3H]-RS-45041-190: a selective high-affinity radioligand for I2 imidazoline receptors.

A C MacKinnon 1, W S Redfern 1, C M Brown 1
PMCID: PMC1909102  PMID: 8528552

Abstract

1. RS-45041-190 (4-chloro-2-(imidazolin-2-yl)isoindoline) is an I2 imidazoline receptor ligand with the highest affinity and selectivity so far described; [3H]-RS-45041-190 has a tritium atom attached to the 7-position on the isoindoline ring. 2. [3H]-RS-45041-190 binding to rat kidney membranes was saturable (Bmax = 223.1 +/- 18.4 fmol mg-1 protein) and of high affinity (Kd = 2.71 +/- 0.59 nM). Kinetic studies revealed that the binding was rapid and reversible, with [3H]-RS-45041-190 interacting with two sites or two affinity states. 3. Competition studies showed that 60-70% of [3H]-RS-45041-190 binding (1 nM) was specifically to imidazoline binding sites of the I2 subtype, characterized by high affinity for idazoxan (pIC50 7.85 +/- 0.03) and cirazoline (pIC50 8.16 +/- 0.05). The remaining 30-40% was displaced specifically by the monoamine oxidase A inhibitors, clorgyline and pargyline. 4. alpha 1- and alpha 2-adrenoceptor, I1 imidazoline, histamine, 5-hydroxytryptamine or dopamine receptor ligands had low affinity suggesting that [3H]-RS-45041-190 did not label receptors of these classes. 5. In autoradiography studies, [3H]-RS-45041-190 labelled discrete regions of rat brain corresponding to the distribution of I2 subtypes, notably the subfornical organ, arcuate nucleus, interpeduncular nucleus, medial habenular nucleus and lateral mammillary nucleus, and additional sites in the locus coeruleus, dorsal raphe and dorsomedial hypothalamic nucleus. 6. [3H]-RS-45041-190 therefore labels I2 receptors with high affinity, and an additional site which has high affinity for some monoamine oxidase inhibitors.

Full text

PDF
1729

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alemany R., Olmos G., García-Sevilla J. A. The effects of phenelzine and other monoamine oxidase inhibitor antidepressants on brain and liver I2 imidazoline-preferring receptors. Br J Pharmacol. 1995 Feb;114(4):837–845. doi: 10.1111/j.1476-5381.1995.tb13280.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birmingham M. K., Sar M., Stumpf W. E. Dexamethasone target sites in the central nervous system and their potential relevance to mental illness. Cell Mol Neurobiol. 1993 Aug;13(4):373–386. doi: 10.1007/BF00711578. [DOI] [PubMed] [Google Scholar]
  3. Bricca G., Dontenwill M., Molines A., Feldman J., Belcourt A., Bousquet P. The imidazoline preferring receptor: binding studies in bovine, rat and human brainstem. Eur J Pharmacol. 1989 Mar 14;162(1):1–9. doi: 10.1016/0014-2999(89)90597-9. [DOI] [PubMed] [Google Scholar]
  4. Brown C. M., MacKinnon A. C., McGrath J. C., Spedding M., Kilpatrick A. T. Alpha 2-adrenoceptor subtypes and imidazoline-like binding sites in the rat brain. Br J Pharmacol. 1990 Apr;99(4):803–809. doi: 10.1111/j.1476-5381.1990.tb13010.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown C. M., MacKinnon A. C., Redfern W. S., Hicks P. E., Kilpatrick A. T., Small C., Ramcharan M., Clague R. U., Clark R. D., MacFarlane C. B. The pharmacology of RS-15385-197, a potent and selective alpha 2-adrenoceptor antagonist. Br J Pharmacol. 1993 Feb;108(2):516–525. doi: 10.1111/j.1476-5381.1993.tb12834.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown C. M., MacKinnon A. C., Redfern W. S., Williams A., Linton C., Stewart M., Clague R. U., Clark R., Spedding M. RS-45041-190: a selective, high-affinity ligand for I2 imidazoline receptors. Br J Pharmacol. 1995 Sep;116(2):1737–1744. doi: 10.1111/j.1476-5381.1995.tb16656.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  8. Chronwall B. M. Anatomy and physiology of the neuroendocrine arcuate nucleus. Peptides. 1985;6 (Suppl 2):1–11. doi: 10.1016/0196-9781(85)90128-7. [DOI] [PubMed] [Google Scholar]
  9. Coupry I., Atlas D., Podevin R. A., Uzielli I., Parini A. Imidazoline-guanidinium receptive site in renal proximal tubule: asymmetric distribution, regulation by cations and interaction with an endogenous clonidine displacing substance. J Pharmacol Exp Ther. 1990 Jan;252(1):293–299. [PubMed] [Google Scholar]
  10. Ernsberger P., Meeley M. P., Mann J. J., Reis D. J. Clonidine binds to imidazole binding sites as well as alpha 2-adrenoceptors in the ventrolateral medulla. Eur J Pharmacol. 1987 Jan 28;134(1):1–13. doi: 10.1016/0014-2999(87)90125-7. [DOI] [PubMed] [Google Scholar]
  11. Gehlert D. R., Gackenheimer S. L., Schober D. A. Autoradiographic localization of subtypes of angiotensin II antagonist binding in the rat brain. Neuroscience. 1991;44(2):501–514. doi: 10.1016/0306-4522(91)90073-w. [DOI] [PubMed] [Google Scholar]
  12. Glover V., Halket J. M., Watkins P. J., Clow A., Goodwin B. L., Sandler M. Isatin: identity with the purified endogenous monoamine oxidase inhibitor tribulin. J Neurochem. 1988 Aug;51(2):656–659. doi: 10.1111/j.1471-4159.1988.tb01089.x. [DOI] [PubMed] [Google Scholar]
  13. Hamilton C. A., Reid J. L., Yakubu M. A. [3H]yohimbine and [3H]idazoxan bind to different sites on rabbit forebrain and kidney membranes. Eur J Pharmacol. 1988 Feb 9;146(2-3):345–348. doi: 10.1016/0014-2999(88)90314-7. [DOI] [PubMed] [Google Scholar]
  14. Kataoka K., Nakamura Y., Hassler R. Habenulo-interpeduncular tract: a possible cholinergic neuron in rat brain. Brain Res. 1973 Nov 9;62(1):264–267. doi: 10.1016/0006-8993(73)90639-2. [DOI] [PubMed] [Google Scholar]
  15. Lanier S. M., Ivkovic B., Singh I., Neumeyer J. L., Bakthavachalam V. Visualization of multiple imidazoline/guanidinium-receptive sites. J Biol Chem. 1993 Jul 25;268(21):16047–16051. [PubMed] [Google Scholar]
  16. Li G., Regunathan S., Barrow C. J., Eshraghi J., Cooper R., Reis D. J. Agmatine: an endogenous clonidine-displacing substance in the brain. Science. 1994 Feb 18;263(5149):966–969. doi: 10.1126/science.7906055. [DOI] [PubMed] [Google Scholar]
  17. MacKinnon A. C., Brown C. M., Spedding M., Kilpatrick A. T. [3H]-idazoxan binds with high affinity to two sites on hamster adipocytes: an alpha 2-adrenoceptor and a non-adrenoceptor site. Br J Pharmacol. 1989 Dec;98(4):1143–1150. doi: 10.1111/j.1476-5381.1989.tb12658.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MacKinnon A. C., Stewart M., Olverman H. J., Spedding M., Brown C. M. [3H]p-aminoclonidine and [3H]idazoxan label different populations of imidazoline sites on rat kidney. Eur J Pharmacol. 1993 Feb 23;232(1):79–87. doi: 10.1016/0014-2999(93)90731-v. [DOI] [PubMed] [Google Scholar]
  19. Mallard N. J., Hudson A. L., Nutt D. J. Characterization and autoradiographical localization of non-adrenoceptor idazoxan binding sites in the rat brain. Br J Pharmacol. 1992 Aug;106(4):1019–1027. doi: 10.1111/j.1476-5381.1992.tb14450.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  21. Olmos G., Gabilondo A. M., Miralles A., Escriba P. V., García-Sevilla J. A. Chronic treatment with the monoamine oxidase inhibitors clorgyline and pargyline down-regulates non-adrenoceptor [3H]-idazoxan binding sites in the rat brain. Br J Pharmacol. 1993 Mar;108(3):597–603. doi: 10.1111/j.1476-5381.1993.tb12848.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rosas-Arellano M. P., Solano-Flores L. P., Ciriello J. Effect of arcuate nucleus activation on neuronal activity in subfornical organ. Brain Res. 1993 Aug 13;619(1-2):352–356. doi: 10.1016/0006-8993(93)91634-5. [DOI] [PubMed] [Google Scholar]
  23. Saura J., Kettler R., Da Prada M., Richards J. G. Quantitative enzyme radioautography with 3H-Ro 41-1049 and 3H-Ro 19-6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci. 1992 May;12(5):1977–1999. doi: 10.1523/JNEUROSCI.12-05-01977.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sim L. J., Joseph S. A. Arcuate nucleus projections to brainstem regions which modulate nociception. J Chem Neuroanat. 1991 Mar-Apr;4(2):97–109. doi: 10.1016/0891-0618(91)90034-a. [DOI] [PubMed] [Google Scholar]
  25. Song K., Allen A. M., Paxinos G., Mendelsohn F. A. Mapping of angiotensin II receptor subtype heterogeneity in rat brain. J Comp Neurol. 1992 Feb 22;316(4):467–484. doi: 10.1002/cne.903160407. [DOI] [PubMed] [Google Scholar]
  26. Yablonsky F., Dausse J. P. Amiloride interacts with [3H]idazoxan and [3H]rauwolscine binding sites in rabbit urethra. Eur J Pharmacol. 1989 May 2;164(1):167–170. doi: 10.1016/0014-2999(89)90245-8. [DOI] [PubMed] [Google Scholar]
  27. Zamir N., Palkovits M., Brownstein M. Distribution of immunoreactive Met-enkephalin-Arg6-Gly7-Leu8 and Leu-enkephalin in discrete regions of the rat brain. Brain Res. 1985 Feb 4;326(1):1–8. doi: 10.1016/0006-8993(85)91378-2. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES